The isolation of clusters of circulating tumor cells (CTCs) from cancer patients has recently challenged the accepted view that the initiation of secondary tumors during metastasis involves the dissemination of individual cancer cells. As such clusters appear to be more aggressive than single tumor cells, CTC clusters are now considered a main player in the metastatic process, and many studies are exploring their diagnostic, prognostic, and clinical significance. However, several technical challenges limit advances in this area. Here, we suggest the use of established cancer cell lines that grow as cell clusters in suspension as a complementary approach that can help in understanding the biology of CTC clusters and their clinical significance. We argue that the many similarities between these "surrogate" clusters and the CTC clusters isolated from patients (e.g., in terms of size, morphology, heterogeneous expression of epithelial and mesenchymal markers, and type of cell-cell junctions) make these cell lines ideal systems for the development of strategies aimed at preventing or slowing down the metastatic process by targeting CTC clusters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858030PMC
http://dx.doi.org/10.3389/fonc.2018.00063DOI Listing

Publication Analysis

Top Keywords

ctc clusters
16
clinical significance
12
clusters
9
circulating tumor
8
cell clusters
8
tumor cells
8
metastatic process
8
cell lines
8
model-systems understand
4
understand biology
4

Similar Publications

Capturing circulating tumor cells (CTCs) in vivo from the bloodstream lessens tumor metastasis and recurrence risks. However, the absence of CTC receptors due to epithelial-mesenchymal transition (EMT), the limited binding capacity of a single ligand, and the complexity of the blood flow environment significantly reduce the efficiency of CTC capture in vivo. Herein, a multivalent ligand-decorated microsphere enrichment system (MLMES) is crafted that incorporates a capture column replete with an immunosorbent that precisely recognizes and binds the stably expressed cluster of differentiation 44 (CD44) and glucose transporter protein 1 (GLUT1) receptors present on the exterior of CTCs.

View Article and Find Full Text PDF

Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers.

View Article and Find Full Text PDF

Background: Circulating tumour cells (CTCs) and tumour-derived extracellular vesicles (tdEVs) have great potential for monitoring therapy response and early detection of tumour relapse, facilitating personalized adjuvant therapeutic strategies. However, their low abundance in peripheral blood limits their informative value. In this study, we explored the presence of CTCs and tdEVs collected intraoperatively from a tumour-draining vein (DV) and via a central venous catheter (CVC) prior to tumour resection.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) travel through the vasculature to seed secondary sites and serve as direct precursors of metastatic outgrowth for many solid tumors. Heterotypic cell clusters form between CTCs and white blood cells (WBCs) and recent studies report that a majority of these WBCs are neutrophils in patient and mouse models. The lab discovered that CTCs produce tubulin-based protrusions, microtentacles (McTNs), which promote reattachment, retention in distant sites during metastasis and formation of tumor cell clusters.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (CAS) genes make up bacteria's adaptive immune system against bacteriophages. In this study, 675 sequences of isolates deposited in GenBank were analyzed in terms of diversity, occurrence, and evolution of the CRISPR-Cas system. This study investigated the presence, structural variations, phylogenetic relationships, and diversity of CRISPR-Cas systems in 675 strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!