Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aqueous sodium-ion battery of low cost, inherent safety, and environmental benignity holds substantial promise for new-generation energy storage applications. However, the narrow potential window of water and the enlarged ionic radius because of hydration restrict the selection of electrode materials used in the aqueous electrolyte. Here, inspired by the efficient redox reaction of biomolecules during cellular energy metabolism, a proof of concept is proposed that the redox-active biomolecule alizarin can act as a novel electrode material for the aqueous sodium-ion battery. It is demonstrated that the specific capacity of the self-assembled alizarin nanowires can reach as high as 233.1 mA h g, surpassing the majority of anodes ever utilized in the aqueous sodium-ion batteries. Paired with biocompatible and biodegradable polypyrrole, this full battery system shows excellent sodium storage ability and flexibility, indicating its potential applications in wearable electronics and biointegrated devices. It is also shown that the electrochemical properties of electrodes can be tailored by manipulating naturally occurring 9,10-anthroquinones with various substituent groups, which broadens application prospect of biomolecules in aqueous sodium-ion batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867053 | PMC |
http://dx.doi.org/10.1002/advs.201700634 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!