Background: The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs) during remyelination, but its role has not been examined during demyelination.

Methods: MicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray) and proteome (liquid chromatography tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis.

Results: miR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2 OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3 and Iba1 macrophages/microglia was reduced in the demyelinating corpus callosum of the KO mice.

Conclusion: During demyelination, absence of miR-146a reduced inflammatory responses, demyelination, axonal loss, the number of infiltrating macrophages, and increased the number of myelinating oligodendrocytes. The number of OPCs was slightly higher in the WT mice during remyelination, indicating a complex role of miR-146a during de- and remyelination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857529PMC
http://dx.doi.org/10.3389/fimmu.2018.00490DOI Listing

Publication Analysis

Top Keywords

corpus callosum
24
demyelination axonal
16
axonal loss
16
de- remyelination
16
mice
14
mir-146a mice
12
mir-146a
9
role mir-146a
8
agilent mouse
8
target genes
8

Similar Publications

Aim: The aim of this study is to assess associated cerebral supratentorial anomalies in patients who underwent myelomeningocele repair in hopes of developing a better morphological apprehension of the forebrain's anomalies in this category of patients.

Material And Methods: This retrospective observational study assessed 426 pediatric patients who underwent myelomeningocele repair between January 2013 and December 2020. Cranial MRIs with T1- and T2-weighted sequences were obtained as part of the postoperative assessment to determine the presence of associated supratentorial anomalies in pediatric patients following myelomeningocele repair.

View Article and Find Full Text PDF

Background: The reversible splenial lesion syndrome is frequently associated with systemic and central nervous system infections. Whether an infection associated with the occurrence of the reversible splenial lesion syndrome could play a role in the later development of multiple sclerosis is unknown.

Methods: Case Report.

View Article and Find Full Text PDF

Applications of MR Finger printing derived T1 and T2 values in Adult brain: A Systematic review.

F1000Res

January 2025

Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Introduction: Magnetic resonance imaging (MRI) is essential for brain imaging, but conventional methods rely on qualitative contrast, are time-intensive, and prone to variability. Magnetic resonance finger printing (MRF) addresses these limitations by enabling fast, simultaneous mapping of multiple tissue properties like T1, T2. Using dynamic acquisition parameters and a precomputed signal dictionary, MRF provides robust, qualitative maps, improving diagnostic precision and expanding clinical and research applications in brain imaging.

View Article and Find Full Text PDF

Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).

Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!