Human T cells activated with mitogens, antigens, or antibodies to the T-cell receptor complex acquire a cascade of new receptors, including the receptors for interleukin-2, transferrin, and insulin. We investigated whether receptors for insulin-like growth factors (IGF) also were expressed on activated T cells. Based on competitive binding studies, immunoprecipitation of labeled cell surface receptors and blocking of radiolabeled peptide binding by a specific monoclonal antibody (alpha IR-3) to the type I IGF receptor, as well as affinity crosslinking of radiolabeled peptides to their receptors, we concluded that both type I and type II IGF receptors are expressed on activated T cells. A specific binding site for IGF-II also was observed on the type I IGF receptor which was not inhibited by alpha IR-3. Receptors for IGF were more numerous on activated T cells than on resting T cells, and their peak expression appeared by the peak of DNA synthesis. Thus, human activated T cells were shown to express both type I and II IGF receptors which could potentially play a role in the regulation of T-cell proliferation, differentiation, and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0008-8749(87)90315-7 | DOI Listing |
Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFBackground: Immunotherapy of Alzheimer's disease (AD) is a promising approach to reducing the accumulation of beta-amyloid, a critical event in the onset of the disease. Targeting the group II metabotropic glutamate receptors, mGluR2 and mGluR3, could be important in controlling Aβ production, although their respective contribution remains unclear due to the lack of selective tools.
Method: 5xFAD mice were chronically treated by a brain penetrant camelid single domain antibody (VHH or nanobody) that is an activator of mGluR2.
Alzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.
Background: The initiation of amyloid plaque deposition signifies a crucial stage in Alzheimer's disease (AD) progression, which often coincides with the disruption of neural circuits and cognitive decline. While the role of excitatory-inhibitory balance is increasingly recognized in AD pathophysiology, targeted therapies to modulate this balance remain underexplored. This study investigates the effect of perampanel, a selective non-competitive AMPA receptor antagonist, in modulating neurophysiological changes in hAPP-J20 transgenic Alzheimer's mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!