Nanoantibiotics: strategic assets in the fight against drug-resistant superbugs.

Int J Nanomedicine

Laboratory of Nanomedicine, School of Physics and Materials Science, Thapar University, Patiala, Punjab, India.

Published: May 2018

Antimicrobial characteristics of metals reveal that Ag despite its economic constraints remains the most popular antibiotic agent. Antimicrobial characteristics of copper nanoparticles (CNPs) are not well understood. To our knowledge, no systematic comparative study on microbial properties of silver nanoparticles (SNPs) and CNPs exists. In this article, a comparative study on microbial properties of engineered metal nanoantibiotics against clinically important strains has been attempted. Our results indicate that biocidal activities of CNPs are better than SNPs. Minimum inhibitory concentration (MIC) values of CNPs are 10 times lower than the corresponding MICs of SNPs. These improved biocidal activities of CNPs would make it affordable and potent nontraditional antibiotics against which microbes are least susceptible to develop any drug resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863621PMC
http://dx.doi.org/10.2147/IJN.S124698DOI Listing

Publication Analysis

Top Keywords

antimicrobial characteristics
8
comparative study
8
study microbial
8
microbial properties
8
biocidal activities
8
activities cnps
8
cnps
5
nanoantibiotics strategic
4
strategic assets
4
assets fight
4

Similar Publications

The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including . Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase.

View Article and Find Full Text PDF

The concise synthesis of O-methyled-inositol derivative and conduritol derivatives was obtained starting from p-benzoquinone. Spectroscopic methods have been performed for characterization of new synthesized compounds. Cyclitols are useful molecules with anticancer, antibiotic, antinutrient and antileukemic activity.

View Article and Find Full Text PDF

Genetic diversity of murine norovirus associated with ethanol sensitivity.

Appl Microbiol Biotechnol

January 2025

Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan.

RNA viruses have high genetic diversity, allowing rapid adaptation to environmental pressures, such as disinfection. This diversity increases the likelihood of mutations influencing the viral sensitivity to disinfectants. Ethanol is widely used to control viral transmission; however, insufficient disinfection facilitates the survival of less-sensitive viruses.

View Article and Find Full Text PDF

Background: Multidrug-resistant bacteria (MDR) represent a significant global health concern and vary in specific settings. Spain reported several annual deaths attributed to MDR bacteria, mainly carbapenemase-producing Enterobacterales.

Objectives: We aimed to characterise the incidence and temporal trends of MDR bacterial infections or colonisations reported within the province of Granada (data from five hospitals), and to investigate factors linked to clinical vulnerability.

View Article and Find Full Text PDF

Tuberculosis (TB), a leading infectious disease caused by the pathogen , poses a significant treatment challenge due to its unique characteristics and resistance to existing drugs. The conventional treatment regimens, which are lengthy and involve multiple drugs, often result in poor patient adherence and subsequent drug resistance, particularly with multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. This highlights the urgent need for novel anti-TB therapies and new drug targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!