Oncofetal gene SALL4 reactivation by hepatitis B virus counteracts miR-200c in PD-L1-induced T cell exhaustion.

Nat Commun

The CAS Key Laboratory of Innate Immunity and Chronic Disease and Institute of Immunology, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230027, Anhui, China.

Published: March 2018

A chronic viral or tumor microenvironment can push T cells to exhaustion by promoting coinhibitory ligand expression. However, how host factors control coinhibitory ligand expression and whether viral infection breaks this control during tumor progress is unknown. Here we show a close negative correlation between SALL4 or PD-L1 and miR-200c in tumors from 98 patients with HBV-related hepatocellular carcinoma. SALL4 or PD-L1 expression correlates negatively with miR-200c expression, and patients with lower levels of SALL4 or PD-L1 and higher miR-200c survive longer. Moreover, over-expression of miR-200c antagonizes HBV-mediated PD-L1 expression by targeting 3'-UTR of CD274 (encoding PD-L1) directly, and reverses antiviral CD8 T cell exhaustion. MiR-200c transcription is inhibited by oncofetal protein SALL4, which is re-expressed through HBV-induced STAT3 activation in adulthood. We propose that an HBV-pSTAT3-SALL4-miR-200c axis regulates PD-L1. Therapeutic strategies to influence this axis might reverse virus-induced immune exhaustion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871883PMC
http://dx.doi.org/10.1038/s41467-018-03584-3DOI Listing

Publication Analysis

Top Keywords

sall4 pd-l1
12
cell exhaustion
8
coinhibitory ligand
8
ligand expression
8
pd-l1 expression
8
mir-200c
6
pd-l1
6
sall4
5
expression
5
oncofetal gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!