A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Myristoylated methionine sulfoxide reductase A is a late endosomal protein. | LitMetric

Myristoylated methionine sulfoxide reductase A is a late endosomal protein.

J Biol Chem

Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892. Electronic address:

Published: May 2018

Methionine residues in proteins provide antioxidant defense by reacting with oxidizing species, which oxidize methionine to methionine sulfoxide. Reduction of the sulfoxide back to methionine is catalyzed by methionine sulfoxide reductases, essential for protection against oxidative stress. The nonmyristoylated form of methionine sulfoxide reductase A (MSRA) is present in mitochondria, whereas the myristoylated form has been previously reported to be cytosolic. Despite the importance of MSRA in antioxidant defense, its binding partners and substrates have not been identified. Starting with a protein array, and followed by immunoprecipitation experiments, colocalization studies, and subcellular fractionation, we identified the late endosomal protein, StAR-related lipid transfer domain-containing 3 (STARD3), as a binding partner of myristoylated MSRA, but not of nonmyristoylated MSRA. STARD3 is known to have both membrane-binding and cytosolic domains that are important in STARD3-mediated transport of cholesterol from the endoplasmic reticulum to the endosome. We found that the STARD3 cytosolic domain localizes MSRA to the late endosome. We propose that the previous conclusion that myristoylated MSRA is strictly a cytosolic protein is artifactual and likely due to vigorous overexpression of MSRA. We conclude that myristoylated MSRA is a late endosomal protein that may play a role in lipid metabolism or may protect endosomal proteins from oxidative damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5950012PMC
http://dx.doi.org/10.1074/jbc.RA117.000473DOI Listing

Publication Analysis

Top Keywords

methionine sulfoxide
16
late endosomal
12
endosomal protein
12
myristoylated msra
12
sulfoxide reductase
8
antioxidant defense
8
msra
8
msra late
8
methionine
6
myristoylated
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!