Functional maturation of liver sinusoidal endothelial cells (LSECs) induced by a NOD1 ligand (diaminopimelic acid [DAP]) during viral infection has not been well defined. Thus, we investigated the role of DAP-stimulated LSEC maturation during hepatitis B virus (HBV) infection and its potential mechanism in a hydrodynamic injection (HI) mouse model. Primary LSECs were isolated from wild-type C57BL/6 mice and stimulated with DAP in vitro and in vivo and assessed for the expression of surface markers as well as for their ability to promote T cell responses via flow cytometry. The effects of LSEC maturation on HBV replication and expression and the role of LSECs in the regulation of other immune cells were also investigated. Pretreatment of LSECs with DAP induced T cell activation in vitro. HI-administered DAP induced LSEC maturation and subsequently enhanced T cell responses, which was accompanied by an increased production of intrahepatic cytokines, chemokines, and T cell markers in the liver. The HI of DAP significantly reduced the HBsAg and HBV DNA levels in the mice. Importantly, the DAP-induced anti-HBV effect was impaired in the LSEC-depleted mice, which indicated that LSEC activation and T cell recruitment into the liver were essential for the antiviral function mediated by DAP application. Taken together, the results showed that the Ag-presenting ability of LSECs was enhanced by DAP application, which resulted in enhanced T cell responses and inhibited HBV replication in a mouse model.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1700921DOI Listing

Publication Analysis

Top Keywords

lsec maturation
12
cell responses
12
liver sinusoidal
8
sinusoidal endothelial
8
endothelial cells
8
hepatitis virus
8
mouse model
8
hbv replication
8
dap induced
8
enhanced cell
8

Similar Publications

Endothelial Slc35a1 Deficiency Causes Loss of LSEC Identity and Exacerbates Neonatal Lipid Deposition in the Liver in Mice.

Cell Mol Gastroenterol Hepatol

May 2024

Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma. Electronic address:

Background & Aims: The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism.

View Article and Find Full Text PDF

There is a significant need for predictive and stable human liver representations for disease modeling and drug testing. Hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) are important non-parenchymal cell components of the liver and are hence of relevance in a variety of disease models, including hepatic fibrosis. Pluripotent stem cell- (PSC-) derived HSCs (scHSCs) and LSECs (scLSECs) offer an attractive alternative to primary human material; yet, the suitability of scHSCs and scLSECs for extended modeling has not been characterized.

View Article and Find Full Text PDF

Therapeutic correction of hemophilia A by transplantation of hPSC-derived liver sinusoidal endothelial cell progenitors.

Cell Rep

April 2022

McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada. Electronic address:

Liver sinusoidal endothelial cells (LSECs) form the predominant microvasculature in the liver where they carry out many functions including the secretion of coagulation factor VIII (FVIII). To investigate the early origins of this lineage, we develop an efficient and scalable protocol to produce human pluripotent stem cell (hPSC)-derived LSEC progenitors characterized as venous endothelial cells (VECs) from different mesoderm subpopulations. Using a sensitive and quantitative vascular competitive transplantation assay, we demonstrate that VECs generated from BMP4 and activin A-induced KDRCD235a/b mesoderm are 50-fold more efficient at LSEC engraftment than venous cells from BMP4 and WNT-induced KDRCD235a/b mesoderm.

View Article and Find Full Text PDF

HBeAg Is Indispensable for Inducing Liver Sinusoidal Endothelial Cell Activation by Hepatitis B Virus.

Front Cell Infect Microbiol

April 2022

Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background And Aims: Liver sinusoidal endothelial cells (LSECs) serve as sentinel cells to detect microbial infection and actively contribute to regulating immune responses for surveillance against intrahepatic pathogens. We recently reported that hepatitis B e antigen (HBeAg) stimulation could induce LSEC maturation and abrogate LSEC-mediated T cell suppression in a TNF-α and IL27 dependent manner. However, it remains unclear how HBeAg deficiency during HBV infection influences LSEC immunoregulation function and intrahepatic HBV-specific CD8 T cell responses.

View Article and Find Full Text PDF

IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 T cells cross-primed by liver sinusoidal endothelial cells.

Cell Rep

February 2022

Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany; German Center for Infection Research, Munich site, München, Germany. Electronic address:

Liver sinusoidal endothelial cells (LSECs) are liver-resident antigen (cross)-presenting cells that generate memory CD8 T cells, but metabolic properties of LSECs and LSEC-primed CD8 T cells remain understudied. Here, we report that high-level mitochondrial respiration and constitutive low-level glycolysis support LSEC scavenger and sentinel functions. LSECs fail to increase glycolysis and co-stimulation after TLR4 activation, indicating absence of metabolic and functional maturation compared with immunogenic dendritic cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!