Not only is ecological specialization a defining feature of much of Earth's biological diversity, the evolution of specialization may also play a central role in generating diversity by facilitating speciation. To understand how ecological specialization evolves, we must know the particular characters that cause organisms to be specialized. For example, most theories of specialization in herbivorous insects emphasize physiological trade-offs in response to toxic plant chemicals. However, even in herbivores, it is likely that other characters are also involved in resource specialization. Knowing the causes of ecological specialization is also crucial for linking specialization to speciation. When the same character(s) that cause specialization also influence assortative mating, speciation may occur particularly rapidly because specialization and reproductive isolation become coupled in a positive feedback that speeds the evolution of both. Indeed, a central hypothesis in the study of ecological speciation is that specialization in recently diverged taxa may often be due to characters that also produce assortative mating. We test this hypothesis by evaluating the causes of ecological specialization among host-associated populations of an herbivorous insect, the pea aphid (Acyrthosiphon pisum). These populations are highly specialized on different host plants (alfalfa or clover; "alternate hosts"), and the races are partially reproductively isolated. Here, we identify key characters responsible for host plant specialization. Our results suggest that the major proximal determinant of host specialization is the behavioral acceptance of a plant rather than the toxicity of the food source. Pea aphids rapidly assess alfalfa and clover and reject the alternate host based on chemical cues that are perceived before the initiation of feeding. This rapid behavioral rejection of the alternate host by a given race has two consequences. First, unrestrained aphids quickly leave the alternate host and search for other plants. Because pea aphids mate on their host plants, divergence in host acceptance among ecologically specialized races leads to congregation on the favored host. This results in de facto assortative mating when sexual forms are produced in late summer. Second, specialized aphids that are held on the alternate host will not feed in a 7.2-h trial, even in the face of starvation. Thus, a complex trait, behavioral acceptance of a plant as host, influences both reproductive isolation (through host-associated assortative mating) and ecological specialization (because of low nutritional uptake on the alternate host). This dual influence of feeding behavior on both assortative mating and resource specialization is central to the maintenance of these divergent races, and it may also have been involved in their origin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/316991 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom.
Efficient planning is a distinctive hallmark of intelligence in humans, who routinely make rapid inferences over complex world contexts. However, studies investigating how humans accomplish this tend to focus on naive participants engaged in simplistic tasks with small state spaces, which do not reflect the intricacy, ecological validity, and human specialization in real-world planning. In this study, we examine the street-by-street route planning of London taxi drivers navigating across more than 26,000 streets in London (United Kingdom).
View Article and Find Full Text PDFZool Res
January 2025
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:
Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( ), a species distinguished by the vibrant plumage of males.
View Article and Find Full Text PDFDigit Health
January 2025
Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.
Background: Advancing evidence-based, tailored interventions for substance use disorders (SUDs) requires understanding temporal directionality while upholding ecological validity. Previous studies identified loneliness and craving as pivotal factors associated with alcohol consumption, yet the precise directionality of these relationships remains ambiguous.
Objective: This study aims to establish a smartphone-based real-life intervention platform that integrates momentary assessment and intervention into everyday life.
Microbiome
January 2025
Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA.
Background: Hybridization between evolutionary lineages has profound impacts on the fitness and ecology of hybrid progeny. In extreme cases, the effects of hybridization can transcend ecological timescales by introducing trait novelty upon which evolution can act. Indeed, hybridization can even have macroevolutionary consequences, for example, as a driver of adaptive radiations and evolutionary innovations.
View Article and Find Full Text PDFGenes Environ
January 2025
Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
Background: Urinary 8-hydroxyguanosine (8-OHGuo) levels serve as a biomarker for oxidative stress and hydroxyl radical-induced RNA damage. Evaluating the diurnal and daily fluctuations in urinary 8-OHGuo excretion levels is essential for understanding its implications. However, research in this area remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!