Newborn neurons undergo inside-out migration to their final destinations during neocortical development. Reelin-induced tyrosine phosphorylation of disabled 1 (Dab1) is a critical mechanism controlling cortical neuron migration. However, the roles of Reelin-independent phosphorylation of Dab1 remain unclear. Here, we report that deleted in colorectal carcinoma (DCC) interacts with Dab1 via its P3 domain. Netrin 1, a DCC ligand, induces Dab1 phosphorylation at Y220 and Y232. Interestingly, knockdown of DCC or truncation of its P3 domain dramatically delays neuronal migration and impairs the multipolar-to-bipolar transition of migrating neurons. Notably, the migration delay and morphological transition defects are rescued by the expression of a phospho-mimetic Dab1 or a constitutively active form of Fyn proto-oncogene (Fyn), a member of the Src-family tyrosine kinases that effectively induces Dab1 phosphorylation. Collectively, these findings illustrate a DCC-Dab1 interaction that ensures proper neuronal migration during neocortical development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2018.03.005 | DOI Listing |
J Biochem
November 2024
Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
Secreted protein Reelin is implicated in neuropsychiatric disorders and its supplementation ameliorates neurological symptoms in mouse disease models. Recombinant human Reelin protein may be useful for the treatment of human diseases, but its properties remain uncharacterized. Here, we report that full-length human Reelin was well secreted from transfected cells and was able to induce Dab1 phosphorylation.
View Article and Find Full Text PDFBiol Pharm Bull
July 2024
Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University.
Dab1 is an intracellular adaptor protein essential for brain formation during development. Tyrosine phosphorylation in Dab1 plays important roles in neuronal migration, dendrite development, and synapse formation by affecting several downstream pathways. Reelin is the best-known extracellular protein that induces Dab1 phosphorylation.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2023
Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA.
Cell Signal
September 2023
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA. Electronic address:
Reelin and its receptor, ApoER2, play important roles in prenatal brain development and postnatally in synaptic plasticity, learning, and memory. Previous reports suggest that reelin's central fragment binds to ApoER2 and receptor clustering is involved in subsequent intracellular signaling. However, limitations of currently available assays have not established cellular evidence of ApoER2 clustering upon binding of the central reelin fragment.
View Article and Find Full Text PDFNat Med
May 2023
Neuroscience Group of Antioquia, Medicine School, University of Antioquia, Medellín, Colombia.
We characterized the world's second case with ascertained extreme resilience to autosomal dominant Alzheimer's disease (ADAD). Side-by-side comparisons of this male case and the previously reported female case with ADAD homozygote for the APOE3 Christchurch (APOECh) variant allowed us to discern common features. The male remained cognitively intact until 67 years of age despite carrying a PSEN1-E280A mutation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!