Shock waves are used clinically for breaking kidney stones and treating musculoskeletal indications. The mechanisms by which shock waves interact with tissue are still not well understood. Here, ultra-high-speed imaging was used to visualize the deformation of individual cells embedded in a tissue-mimicking phantom when subject to shock-wave exposure from a clinical source. Three kidney epithelial cell lines were considered to represent normal healthy (human renal epithelial), cancer (CAKI-2), and virus-transformed (HK-2) cells. The experimental results showed that during the compressive phase of the shock waves, there was a small (<2%) decrease in the projected cell area, but during the tensile phase, there was a relatively large (∼10%) increase in the projected cell area. The experimental observations were captured by a numerical model with a constitutive material framework consisting of an equation of state for the volumetric response and hyper-viscoelasticity for the deviatoric response. To model the volumetric cell response, it was necessary to change from a higher bulk modulus during the compression to a lower bulk modulus during the tensile shock loading. It was discovered that cancer cells showed a smaller deformation but faster response to the shock-wave tensile phase compared to their noncancerous counterparts. Cell viability experiments, however, showed that cancer cells suffered more damage than other cell types. These data suggest that the cell response to shock waves is specific to the type of cell and waveforms that could be tailored to an application. For example, the model predicts that a shock wave with a tensile stress of 4.59 MPa would increase cell membrane permeability for cancer cells with minimal impact on normal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883951PMC
http://dx.doi.org/10.1016/j.bpj.2017.09.042DOI Listing

Publication Analysis

Top Keywords

shock waves
16
response single
4
single cells
4
shock
4
cells shock
4
waves
4
waves numerically
4
numerically optimized
4
optimized waveforms
4
waveforms cancer
4

Similar Publications

The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.

View Article and Find Full Text PDF

Calcifying Tendinopathy of the Rotator Cuff: Barbotage vs. Shock Waves: Controlled Clinical Trial Protocol (BOTCH).

Healthcare (Basel)

December 2024

Interlevel Clinical Management Unit of Physical Medicine and Rehabilitation, Reina Sofía University Hospital, Córdoba and Guadalquivir Health District, 14011 Córdoba, Spain.

: Shoulder pain is a very common health issue among adults, being 8% due to calcifying tendinopathies (CT) of the shoulder. The evolutionary process of this lesion can be classified according to Bianchi Martinoli, depending on the ultrasound appearance. In 50% of cases, with first-line treatments, they resolve spontaneously.

View Article and Find Full Text PDF

Introduction: The aim of our prospective blinded clinical study was to examine a possible improvement and acceleration of epithelialization by treatment with low-energy extracorporeal shock waves on skin graft donor and recipient sites in patients with chronic wounds. In addition, several secondary parameters were investigated to evaluate the compatibility of the therapeutic method, its influence on infection occurrence and bacterial colonization.

Materials And Methods: A total of 35 patients were included in the study.

View Article and Find Full Text PDF

Distributed feedback lasers, which feature rapid wavelength tunability, are not presently available in the yellow and orange spectral regions, impeding spectroscopic studies of short-lived species that absorb light in this range. To meet this need, a rapidly tunable laser system was constructed, characterized, and demonstrated for measurements of the NH radical at 597.4 nm.

View Article and Find Full Text PDF

The most time-consuming aspect of dental prosthesis installation is the osseointegration of a metal implant with bone tissue. The acceleration of this process may be achieved through the use of extracorporeal shock wave therapy. The objective of this study is to investigate the conditions for osseointegration of the second premolar implant in the mandibular segment through the use of a poroelastic model implemented in the movable cellular automaton method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!