The fornicata (fornicates) is a eukaryotic group known to consist of free-living and parasitic organisms. Genome datasets of two model fornicate parasites Giardia intestinalis and Spironucleus salmonicida are well annotated, so far. The nuclear genomes of G. intestinalis assemblages and S. salmonicida are small in terms of the genome size and simple in genome structure. However, an ancestral genomic structure and gene contents, from which genomes of the fornicate parasites have evolved, remains to be clarified. In order to understand genome evolution in fornicates, here, we present the draft genome sequence of a free-living fornicate, Kipferlia bialata, the divergence of which is earlier than those of the fornicate parasites, and compare it to the genomes of G. intestinalis and S. salmonicida. Our data show that the number of protein genes and introns in K. bialata genome are the most abundant in the genomes of three fornicates, reflecting an ancestral state of fornicate genome evolution. Evasion mechanisms of host immunity found in G. intestinalis and S. salmonicida are absent in the K. bialata genome, suggesting that the two parasites acquired the complex membrane surface proteins on the line leading to the common ancestor of G. intestinalis and S. salmonicida after the divergence from K. bialata. Furthermore, the mitochondrion related organelles (MROs) of K. bialata possess more complex suites of metabolic pathways than those in Giardia and in Spironucleus. In sum, our results unveil the process of reductive evolution which shaped the current genomes in two model fornicate parasites G. intestinalis and S. salmonicida.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874029PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194487PLOS

Publication Analysis

Top Keywords

fornicate parasites
20
intestinalis salmonicida
16
genome evolution
12
genome
9
draft genome
8
kipferlia bialata
8
model fornicate
8
genomes intestinalis
8
bialata genome
8
fornicate
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!