Background: No standardized methodology and objective criteria currently exist to accurately and objectively assess tunnel placement and consequent graft orientation in anterior cruciate ligament (ACL) reconstruction (ACLR) through a single imaging modality. Advances in magnetic resonance imaging (MRI) technology have enabled the use of volumetric high spatial and contrast resolution proton density-weighted sequencing, which allows precise delineation of graft orientation, tunnel position, and quantitative assessment of tunnel position relationship to adjacent reproducible anatomic landmarks.
Purpose: To establish an MRI protocol that would provide an accurate alternative to 3-dimensional computed tomography (3D-CT) for standardized assessment of bone tunnel placement in ACLR, as a component of assessing ACLR outcomes and to assist in presurgical planning for revision ACLR.
Study Design: Cohort study (diagnosis); Level of evidence, 2.
Methods: Twenty-four participants diagnosed with a failed ACLR underwent MRI and 3D-CT per the imaging protocols of the Sydney Orthopaedic Research Institute, in which the acquired data were converted to 3D models. The bone tunnels of the previous ACLR were then intraoperatively digitized at the tunnel aperture and along the length of the tunnel (barrel) and used as the reference standard to evaluate the accuracy of high-resolution MRI and 3D-CT. Differences in geometry between the image-based model and the reference point cloud were calculated through point-to-point comparison.
Results: At the tunnel apertures, no significant differences were detected between the MRI and 3D-CT models versus the reference models for the femur ( P = .9472) and tibia ( P = .5779). Mean ± SD tunnel barrel deviations between MRI and 3D-CT were 0.48 ± 0.28 mm (femur) and 0.46 ± 0.27 mm (tibia). No significant differences were detected between the MRI and 3D-CT models versus the reference models for the femoral ( P = .5730) and tibial ( P = .3002) tunnel barrels.
Conclusion: This study demonstrated that, in addition to being the optimum modality for assessment of soft tissue injury of the knee, a high-resolution 3D turbo spin echo proton density sequence can provide an accurate assessment of tunnel placement, without the use of ionizing radiation. Therefore, this protocol provides the foundation for an objective standardized platform to quantitatively evaluate the location of ACL bone tunnels and graft orientation for routine postoperative assessment, presurgical planning, and evaluation of clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0363546518758950 | DOI Listing |
BMC Musculoskelet Disord
January 2025
Chinese People's Armed Police Force Special Medical Center, Tianjin, 300300, China.
Background: Lumbar burst fracture combined with lamina fracture is a special type of spinal fracture. Neither CT nor MRI can accurately determine it. The present study aims to investigate the clinical value of 3D CT/MRI fusion imaging in the treatment of lumbar burst fracture complicated with lamina fracture.
View Article and Find Full Text PDFPurpose: To clarify the femoral tunnel location for a virtual anterior cruciate ligament (ACL) graft to simulate the native ACL.
Methods: Three-dimensional (3D) computed tomography (CT) and magnetic resonance imaging (MRI) were obtained in 14 normal knees in full extension. Two types of virtual triple bundle ACL grafts (VACLG) were created.
Childs Nerv Syst
December 2024
NJ Craniofacial Center, Morristown, NJ, 07960, USA.
Background: Goldenhar syndrome is a clinically heterogeneous disorder defined by a rare combination of congenital anomalies-an eye abnormality, in addition to two of the following three: ear anomalies, mandibular malformations, and vertebral defects. Notably, children with Goldenhar syndrome present with a high incidence of cervical spine malformations.
Clinical Case: In this report, we present an unusual case of a 15-year-old child with Goldenhar syndrome, who additionally presents with some clinical features of VACTERL syndrome.
Sci Data
December 2024
Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China.
Modern facial surgical planning and therapeutic strategies rely heavily on the precise segmentation of the nasal cavity and paranasal sinuses from computed tomography (CT) images for quantitative analysis. Nevertheless, manual segmentation is labor-intensive and prone to inconsistencies, highlighting the need for automatic segmentation methods. A significant challenge in this field is the lack of publicly available clinical datasets for research.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
November 2024
Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy.
Purpose: Recurrent shoulder instability, a common musculoskeletal disorder, often involves glenoid bone loss and Hill-Sachs lesions. However, the optimal imaging modality for accurately and reliably quantifying bipolar bone loss remains uncertain. This systematic review aims to evaluate the accuracy and reliability of various imaging modalities in assessing bipolar bone loss in anterior shoulder instability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.