Perovskite rare-earth nickelates RNiO are prototype correlated oxides displaying a metal-insulator transition (MIT) at a temperature tunable by the ionic radius of the rare-earth R. Although its precise origin remains a debated topic, the MIT can be exploited in various types of applications, notably for resistive switching and neuromorphic computation. So far, the MIT has been mostly studied by macroscopic techniques, and insights into its nanoscale mechanisms were only provided recently by X-ray photoemission electron microscopy through absorption line shifts, used as an indirect proxy to the resistive state. Here, we directly image the local resistance of NdNiO thin films across their first-order MIT using conductive-atomic force microscopy. Our resistance maps reveal the nucleation of ∼100-300 nm metallic domains in the insulating state that grow and percolate as temperature increases. We discuss the resistance contrast mechanism, analyze the microscopy and transport data within a percolation model, and propose experiments to harness this mesoscopic electronic texture in devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.7b04728DOI Listing

Publication Analysis

Top Keywords

metal-insulator transition
8
direct mapping
4
mapping phase
4
phase separation
4
separation metal-insulator
4
transition ndnio
4
ndnio perovskite
4
perovskite rare-earth
4
rare-earth nickelates
4
nickelates rnio
4

Similar Publications

The First Molecular Ferroelectric Mott Insulator.

Adv Mater

January 2025

Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.

With the discovery of colossal magnetoresistance materials and high-temperature superconductors, Mott insulators can potentially undergo a transition from insulating state to metallic state. Here, in molecular ferroelectrics system, a Mott insulator of (CHN)VO has been first synthesized, which is a 2D organic-inorganic ferroelectric with composition of layered vanadium oxide and quinuclidine ring. Interestingly, accompanied by the ferroelectric phase transition, (CHN)VO changes sharply in conductivity.

View Article and Find Full Text PDF

X-ray Nanoimaging of a Heterogeneous Structural Phase Transition in VO.

Nano Lett

January 2025

Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.

Controlling the Mott transition through strain engineering is crucial for advancing the development of memristive and neuromorphic computing devices. Yet, Mott insulators are heterogeneous due to intrinsic phase boundaries and extrinsic defects, posing significant challenges to fully understanding the impact of microscopic distortions on the local Mott transition. Here, using a synchrotron-based scanning X-ray nanoprobe, we studied the real-space structural heterogeneity during the structural phase transition in a VO thin film.

View Article and Find Full Text PDF

Artificial Photothermal Nociceptor Using Mott Oscillators.

Adv Sci (Weinh)

December 2024

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Bioinspired sensory systems based on spike neural networks have received considerable attention in resolving high energy consumption and limited bandwidth in current sensory systems. To efficiently produce spike signals upon exposure to external stimuli, compact neuron devices are required for signal detection and their encoding into spikes in a single device. Herein, it is demonstrated that Mott oscillative spike neurons can integrate sensing and ceaseless spike generation in a compact form, which emulates the process of evoking photothermal sensing in the features of biological photothermal nociceptors.

View Article and Find Full Text PDF

Study on the piezoresistivity of Cr-doped VO thin film for MEMS sensor applications.

Microsyst Nanoeng

December 2024

Micro- and Nanosystems, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001, Leuven, Belgium.

Cr-doped VO thin film shows a huge resistivity change with controlled epitaxial strain at room temperature as a result of a gradual Mott metal-insulator phase transition with strain. This novel piezoresistive transduction principle makes Cr-doped VO thin film an appealing piezoresistive material. To investigate the piezoresistivity of Cr-doped VO thin film for implementation in MEMS sensor applications, the resistance change of differently orientated Cr-doped VO thin film piezoresistors with external strain change was measured.

View Article and Find Full Text PDF

Shot Noise in a Metal Close to the Mott Transition.

Nano Lett

December 2024

Department of Physics, Emory University, Atlanta, Georgia 30322, United States.

SrIrO is a metallic complex oxide with unusual electronic and magnetic properties believed to originate from electron correlations due to its proximity to the Mott metal-insulator transition. However, the nature of its electronic state and the mechanism of metallic conduction remain poorly understood. We demonstrate that the shot noise produced by nanoscale SrIrO junctions is strongly suppressed, inconsistent with diffusive quasiparticle transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!