An unmet need in nanomedicine is to prepare biocompatible and renal clearable nanoparticles by controlling the diameter, composition and surface properties of the nanoparticles. This paper reports cellulose nanofiber templated synthesis of ultra-small bismuth nanoparticles, and their uses in enhanced X-ray radiation therapy. The interstitial spaces between adjacent fibers are the adsorption sites of bismuth ions and also stabilize nanoparticles generated by chemical reduction. The sizes of nanoparticles are tailored in the 2-10 nm range using cellulose nanofibers with various amounts of carboxyl groups. In vitro cytotoxicity, reactive oxygen species (ROS) and in vivo animal tests with tumor-bearing mice are studied in order to enhance X-ray radiation therapy using cellulose nanofiber-templated bismuth nanoparticles. Bismuth nanoparticles show strong X-ray attenuation ability, concentration-dependent cytotoxicity and high level production of ROS upon X-ray exposure, which is consistent with enhanced cellular damage and retarded growth of tumors in animals.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr06462dDOI Listing

Publication Analysis

Top Keywords

bismuth nanoparticles
16
radiation therapy
12
ultra-small bismuth
8
nanoparticles
8
nanoparticles enhanced
8
x-ray radiation
8
bismuth
5
nanocellulose templated
4
templated growth
4
growth ultra-small
4

Similar Publications

Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.

The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites, leading to low electrochemical activity.

View Article and Find Full Text PDF

Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.

View Article and Find Full Text PDF

Metallic bismuth is a promising anode electrode material for sodium ion batteries due to its high theoretical specific capacity. However, the formation of NaBi during the reaction process brings about significant volume changes and structural collapse of the electrode, resulting in the destruction of structures and a decrease in the cycling stability of sodium ion batteries. In this study, bismuth nanoparticles embedded in carbon fibers (Bi/CF) through a facile approach of electrospinning and calcination.

View Article and Find Full Text PDF

Nanostructured bismuth ferrite (BiFeO) single-phase nanoparticles with 76.2% crystallinity and 100% perovskite structure were synthesized using a co-precipitation method. The X-ray diffraction pattern confirmed the perovskite structure of BFO, and Rietveld refinement demonstrated the presence of a triclinic structure with the 1 space group.

View Article and Find Full Text PDF

Context: Bi-containing free-cutting steel has consistently attracted attention in the field of materials processing. The molecular dynamics (MD) simulations were used to investigate the impact of bismuth (Bi) nanoparticles on the internal structural evolution and mechanical properties of single-crystal Fe during the rolling process. The influence of varying rolling depths in the presence of nanoparticles is also examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!