Suppression of Auger Recombination in Nanocrystals via Ligand-Assisted Wave Function Engineering in Reciprocal Space.

J Phys Chem Lett

Pollard Institute, School of Electronic and Electrical Engineering , University of Leeds, Leeds LS2 9JT , United Kingdom.

Published: April 2018

A limiting factor to the technological application of conventional semiconductor nanostructures is their fast Auger recombination time. Strategies to increase it have so far mostly focused on decreasing the electron-hole wave function overlap in real space through structural modifications involving either elongation or shell growth. Here we propose an alternative mechanism for Auger recombination suppression: a decrease in the overlap of electron and hole wave functions in reciprocal space.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.8b00248DOI Listing

Publication Analysis

Top Keywords

auger recombination
12
wave function
8
reciprocal space
8
suppression auger
4
recombination nanocrystals
4
nanocrystals ligand-assisted
4
ligand-assisted wave
4
function engineering
4
engineering reciprocal
4
space limiting
4

Similar Publications

Highly bright perovskite light-emitting diodes enabled by retarded Auger recombination.

Nat Commun

January 2025

Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.

One of the key advantages of perovskite light-emitting diodes (PeLEDs) is their potential to achieve high performance at much higher current densities compared to conventional solution-processed emitters. However, state-of-the-art PeLEDs have not yet reached this potential, often suffering from severe current-efficiency roll-off under intensive electrical excitations. Here, we demonstrate bright PeLEDs, with a peak radiance of 2409 W sr m and negligible current-efficiency roll-off, maintaining high external quantum efficiency over 20% even at current densities as high as 2270 mA cm.

View Article and Find Full Text PDF

Currently, CsPbI quantum dots (QDs) based light-emitting diodes (LEDs) are not well suited for achieving high efficiency and operational stability due to the binary-precursor method and purification process, which often results in the nonstoichiometric ratio of Cs/Pb/I. This imbalance leads to amounts of iodine vacancies, inducing severe non-radiative recombination processes and phase transitions of QDs. Herein, red-emitting CsPbI QDs are reported with excellent optoelectronic properties and stability based on the synergistic effects of halide-rich modulation passivation and lattice repair.

View Article and Find Full Text PDF

Laser diodes based on solution-processed semiconductor quantum dots (QDs) present an economical and color-tunable alternative to traditional epitaxial lasers. However, their efficiency is significantly limited by non-radiative Auger recombination, a process that increases lasing thresholds and diminishes device longevity through excessive heat generation. Recent advancements indicate that these limitations can be mitigated by employing spherical quantum wells, or quantum shells (QSs), in place of conventional QDs.

View Article and Find Full Text PDF

We demonstrate the use of [2-(9-carbazol-9-yl)ethyl]phosphonic acid (2PACz) and [2-(3,6-di--butyl-9-carbazol-9-yl)ethyl]phosphonic acid (-Bu-2PACz) as anode modification layers in metal-halide perovskite quantum dot light-emitting diodes (QLEDs). Compared to conventional QLED structures with PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrenesulfonate)/PVK (poly(9-vinylcarbazole)) hole-transport layers, the QLEDs made with phosphonic acid (PA)-modified indium tin oxide (ITO) anodes show an over seven-fold increase in brightness, achieving a brightness of 373,000 cd m, one of the highest brightnesses reported to date for colloidal perovskite QLEDs. Importantly, the onset of efficiency roll-off, or efficiency droop, occurs at ∼1000-fold higher current density for QLEDs made with PA-modified anodes compared to control QLEDs made with conventional PEDOT:PSS/PVK hole transport layers, allowing the devices to sustain significantly higher levels of external quantum efficiency at a brightness of >10 cd m.

View Article and Find Full Text PDF

The simulation of ideal and non-ideal conditions using the SCAPS-1D simulator for novel structure Ag/FTO/CuBiO/GQD/Au was done for the first time. The recombination of charge carriers in CuBiO is an inherent problem due to very low hole mobility and polaron transport in the valence band. The in-depth analysis of the simulation result revealed that Graphene Quantum Dots (GQDs) can act as an appropriate hole transport layer (HTL) and can enhance hole transportation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!