Haploinsufficiency of SIX3 Abolishes Male Reproductive Behavior Through Disrupted Olfactory Development, and Impairs Female Fertility Through Disrupted GnRH Neuron Migration.

Mol Neurobiol

Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA.

Published: November 2018

Mating behavior in males and females is dependent on olfactory cues processed through both the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Signaling through the MOE is critical for the initiation of male mating behavior, and the loss of MOE signaling severely compromises this comportment. Here, we demonstrate that dosage of the homeodomain gene Six3 affects the degree of development of MOE but not the VNO. Anomalous MOE development in Six3 heterozygote mice leads to hyposmia, specifically disrupting male mounting behavior by impairing detection of volatile female estrus pheromones. Six3 is highly expressed in the MOE, main olfactory bulb (MOB), and hypothalamus; all regions essential in the proper migration of the gonadotropin-releasing hormone (GnRH) neurons, a key reproductive neuronal population that migrates along olfactory axons from the developing nose into the brain. Interestingly, we find that the reduction in Six3 expression in Six3 heterozygote mice compromises development of the MOE and MOB, resulting in mis-migration of GnRH neurons due to improper olfactory axon targeting. This reduction in the hypothalamic GnRH neuron population, by 45% in adulthood, leads to female subfertility, but does not impact male hormone levels, suggesting that male infertility is not related to GnRH neuron numbers, but exclusively linked to abnormal olfaction. We here determine that Six3 is haploinsufficient for MOE development, GnRH neuron migration, and fertility, and represents a novel candidate gene for Kallmann syndrome, a form of inherited infertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156938PMC
http://dx.doi.org/10.1007/s12035-018-1013-0DOI Listing

Publication Analysis

Top Keywords

gnrh neuron
16
neuron migration
8
mating behavior
8
main olfactory
8
moe
8
development moe
8
moe development
8
six3 heterozygote
8
heterozygote mice
8
gnrh neurons
8

Similar Publications

Multi-dimensional oscillatory activity of mouse GnRH neurons in vivo.

Elife

January 2025

Department of Physiology, Development and Neuroscience, Downing site, University of Cambridge, Cambridge, United Kingdom.

The gonadotropin-releasing hormone (GnRH) neurons represent the key output cells of the neural network controlling mammalian fertility. We used GCaMP fiber photometry to record the population activity of the GnRH neuron distal projections in the ventral arcuate nucleus where they merge before entering the median eminence to release GnRH into the portal vasculature. Recordings in freely behaving intact male and female mice revealed abrupt ~8 min duration increases in activity that correlated perfectly with the appearance of a subsequent pulse of luteinizing hormone (LH).

View Article and Find Full Text PDF

GnRH pulse generator activity in mouse models of polycystic ovary syndrome.

Elife

January 2025

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.

Article Synopsis
  • One in ten women of reproductive age have PCOS, characterized by subfertility, high LH levels, and potential dysfunction in the kisspeptin neurons that regulate GnRH.
  • Researchers studied the GnRH pulse generator in two mouse models of PCOS: the peripubertal androgen (PPA) model showed fewer synchronized neuron events, while the prenatal androgen (PNA) model revealed variable GnRH activity but cyclical patterns indicating complexity.
  • Findings indicate that in the PNA model, ARN neurons had increased activity during specific stages and less sensitivity to progesterone, highlighting the need to understand GnRH regulation in PCOS-related conditions.
View Article and Find Full Text PDF

While hypothalamic kisspeptin (KP) neurons play well-established roles in the estrogen-dependent regulation of reproduction, little is known about extrahypothalamic KP-producing (KP) neurons of the lateral septum. As established previously, expression in this region is low and regulated by estrogen receptor- and GABA receptor-dependent mechanisms. Our present experiments on knock-in mice revealed that transgene expression in the LS begins at P33-36 in females and P40-45 in males and is stimulated by estrogen receptor signaling.

View Article and Find Full Text PDF

Hypothalamic SIRT1-mediated regulation of the hormonal trigger of ovulation and its repression in energy deficit.

Metabolism

December 2024

Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

Female reproduction is highly sensitive to body energy stores; persistent energy deficit, as seen in anorexia or strenuous exercise, is known to suppress ovulation via ill-defined mechanisms. We report herein that hypothalamic SIRT1, a key component of the epigenetic machinery that links nutritional status and puberty onset via modulation of Kiss1, plays a critical role in the control of the preovulatory surge of gonadotropins, i.e.

View Article and Find Full Text PDF

We developed a versatile 'IHC/LCM-Seq' method for spatial transcriptomics of immunohistochemically detected neurons collected with laser-capture microdissection (LCM). IHC/LCM-Seq uses aluminon and polyvinyl sulfonic acid for inventive RNA-preserving strategies to maintain RNA integrity in free-floating sections of 4% formaldehyde-fixed brains. To validate IHC/LCM-Seq, we first immunostained and harvested striatal cholinergic interneurons with LCM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!