Two copper(i)-nitro complexes [Tpm3-tBuCu(NO2)] (1) and [(Ph3P)2N][Tp3-tBuCu(NO2)] (2), containing steric bulky neutral tris(3-tert-butylpyrazolyl)methane and anionic hydrotris(3-tert-butylpyrazolyl)borate ligands, have been synthesized and characterized. Complex 2 adopts a unique κ2-binding mode of Tp3-tBu around the copper(i)-nitro environment in the solid state and shows a four-coordinated tetrahedral geometry surrounded by a nitro and three pz3-tBu groups in solution. Both complexes 1 and 2 allow for the stoichiometric reduction of NO2- to NO with H+ addition. The results of this effort show that increasing steric bulk and electron donation properties on the nitrogen ancillary ligand will improve the nitrite reduction ability of the copper(i)-nitro model complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7dt03843g | DOI Listing |
Unlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.
View Article and Find Full Text PDFFoods
January 2025
Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
Nitrite and nitrate in meat products may be perceived negatively by consumers. These compounds can react to form carcinogenic volatile N-nitrosamines. "Nitrite-free" (i.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
Macrolide pollution has attracted a great deal of attention because of its ecotoxic effects on microalgae, but the role of phycospheric bacteria under antibiotic stress remains unclear. This study explored the toxic effects of erythromycin (ERY) on the growth and nitrogen metabolism of ; then, it analyzed and predicted the effects of the composition and ecological function of phycospheric bacteria on microalgae under ERY stress. We found that 0.
View Article and Find Full Text PDFHeliyon
January 2025
Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
In this study, a Cu@Ag core-shell was synthesized using a co-precipitation method. To create a new electrochemical sensor, a Cu@Ag core-shell with conductive polymers such as polyalizarin yellow R (PA) and Nafion (Nf) was immobilized on the surface of a glassy carbon electrode (Cu@Ag-Nf/PA/GCE). X-ray diffraction analysis (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR) techniques were employed to characterize the Cu@Ag-Nf/PA/GCE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!