The study aim was to assess the impact of different surface nanofeatures on otherwise smooth titanium surfaces on bacterial adhesion as well as on their osteogenic potential. Bacterial adhesion was assessed in the presence of saliva under static and dynamic conditions to approximate both sub- and supragingival conditions in the oral cavity as the gingival seal will be affected by implantation. The ultimate goal was to develop a surface that will reduce biofilm formation but still support osseointegration in vivo. To this end nanotubular or nanopitted surfaces were created on electropolished titanium via electrochemical anodization procedures. Sandblasted/acid etched surfaces (SBAE) were used as a microrough reference. Bacterial adhesion was studied using saliva-precoated samples with S. sanguinis as a typical early colonizer of the oral cavity; osteogenic differentiation was assessed with human bone marrow stromal cells. While bacterial adhesion was reduced on all microsmooth surfaces to an average of 17% surface coverage compared to 61% on SBAE under static conditions, under dynamic conditions the nanopitted surface had a significant impact on bacterial adhesion. Here fluid flow removed all bacteria. By comparison, the reduction on the nanotubular surface was only similar to that of the SBAE reference. We hypothesise the underlying cause to be an effect of the surface morphology on the structure and composition of the saliva precoating that reduces its stability, giving rise to a self-cleaning effect. In addition, no negative influence on the osteogenic potential of the nanopitted surface could be determined by alkaline phosphatase activity, mineralization behaviour or gene expression; it remained on a par with the tissue culture plastic control. Thus, nanopitting seems to be a promising surface treatment candidate for dental implants to reduce infection related complications without compromising the implant integration.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8bm00177dDOI Listing

Publication Analysis

Top Keywords

bacterial adhesion
20
oral cavity
12
titanium surfaces
8
surface
8
osteogenic potential
8
dynamic conditions
8
nanopitted surface
8
surfaces
5
conditions
5
bacterial
5

Similar Publications

In critically ill patients, the occurrence of multidrug-resistant infection is a significant concern, given its ability to acquire multidrug-resistant, form biofilms and secrete toxic effectors. In Brazil, limited data are available regarding the prevalence of dissemination, and the impact of the type III secretion system (T3SS) on toxin production and biofilm formation in clinical isolates of . This study investigates the dissemination of virulent harbouring the and genes, the presence of T3SS genes and their biofilm-forming capability.

View Article and Find Full Text PDF

Bidirectional effects of neutrophils on biofilms .

J Oral Microbiol

January 2025

Periodontal Research Group, Department of Dentistry, School of Health Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, UK.

Background: is a commensal bacterium and an early biofilm coloniser found in the human oral cavity. One of the biofilm matrix constituents is bacterial extracellular DNA (eDNA). Neutrophils are innate immune cells that respond to biofilms, employing antimicrobial mechanisms such as neutrophil extracellular trap (NET) and reactive oxygen species (ROS) release.

View Article and Find Full Text PDF

A genetically encoded fluorescent biosensor for sensitive detection of cellular c-di-GMP levels in .

Front Chem

January 2025

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China.

Cyclic di-guanosine monophosphate (c-di-GMP) acts as a second messenger regulating bacterial behaviors including cell cycling, biofilm formation, adhesion, and virulence. Monitoring c-di-GMP levels is crucial for understanding these processes and designing inhibitors to combat biofilm-related antibiotic resistance. Here, we developed a genetically encoded biosensor, cdiGEBS, based on the transcriptional activity of the c-di-GMP-responsive transcription factor MrkH.

View Article and Find Full Text PDF

Antibiotics are central to managing airway infections in cystic fibrosis (CF), yet current treatments often fail due to the presence of biofilms, settling down the need for seeking therapies targeting biofilms. This study aimed to investigate the antibiofilm activity of aspartic acid and its potential as an adjuvant to tobramycin against biofilms formed by mucoid and small colony variant (SCV) tobramycin tolerant strain. We assessed the effect of aspartic acid on both surface-attached and suspended biofilms within CF artificial mucus and investigated the synergistic impact of combining it with non-lethal tobramycin concentrations.

View Article and Find Full Text PDF

We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!