Background: Cellulases of glycosyl hydrolase (GH) family 5 share a (β/α) TIM-barrel fold structure with eight βα loops surrounding the catalytic pocket. These loops exposed on the surface play a vital role in protein functions, primarily due to the interactions of some key amino acids with solvent and ligand molecules. It has been reported that motions of these loops facilitate substrate access and product release, and loops 6 and 7 located at the substrate entrance of the binding pocket promote proton transfer reaction at the catalytic site motions. However, the role of these flexible loops in catalysis of GH5 cellulase remains to be explored.
Results: In the present study, an acidic, mesophilic GH5 cellulase (with optimal activity at pH 4.0 and 70 °C), Cel5, was identified in CBS 900.73. The specific activities of Cel5 toward CMC-Na, barley β-glucan, and lichenan were 1117 ± 43, 6257 ± 26 and 5318 ± 54 U/mg, respectively. Multiple sequence alignment indicates that one amino acid residue at position 233 on the loop 6 shows semi-conservativeness and might contribute to the great catalytic performance. Saturation mutagenesis at position 233 was then conducted to reveal the vital roles of this position in enzyme properties. In comparison to the wild type, variants N233A and N233G showed decreased optimal temperature (- 10 °C) but increased activities (27 and 70%) and catalytic efficiencies (/; 45 and 52%), respectively. The similar roles of position 233 in catalytic performance were also verified in the other two GH5 homologs, Egl5A and Cel5, by reverse mutation. Further molecular dynamics simulations suggested that the substitution of asparagine with alanine or glycine may introduce more hydrogen bonds, increase the flexibility of loop 6, enhance the interactions between enzyme and substrate, and thus improve the substrate affinity and catalytic efficiency.
Conclusion: This study proposed a novel cellulase with potentials for industrial application. A specific position was identified to play key roles in cellulase-substrate interactions and enzyme catalysis. It is of great importance for understanding the binding mechanism of GH5 cellulases, and provides an effective strategy to improve the catalytic performance of cellulases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863444 | PMC |
http://dx.doi.org/10.1186/s13068-018-1080-5 | DOI Listing |
Front Microbiol
December 2024
Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
Soda lakes are unique double-extreme habitats characterized by high salinity and soluble carbonate alkalinity, yet harboring rich prokaryotic life. Despite intensive microbiology studies, little is known about the identity of the soda lake hydrolytic bacteria responsible for the primary degradation of the biomass organic matter, in particular cellulose. In this study, aerobic and anaerobic enrichment cultures with three forms of native insoluble cellulose inoculated with sediments from five soda lakes in south-western Siberia resulted in the isolation of four cellulotrophic haloalkaliphilic bacteria and their four saccharolytic satellites.
View Article and Find Full Text PDFMar Drugs
December 2024
Jeju Bio Research Center, Korea Institute of Ocean Science & Technology, Jeju-si 63349, Republic of Korea.
In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
BMC Microbiol
November 2024
Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
Biotechnol Biofuels Bioprod
October 2024
Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!