The precise cell type hosting latent human cytomegalovirus (HCMV) remains elusive. Here, we report that HCMV reprogrammes human haematopoietic progenitor cells (HPCs) into a unique monocyte subset to achieve latency. Unlike conventional monocytes, this monocyte subset possesses higher levels of B7-H4, IL-10 and inducible nitric oxide synthase (iNOS), a longer lifespan and strong immunosuppressive capacity. Cell sorting of peripheral blood from latently infected human donors confirms that only this monocyte subset, representing less than 0.1% of peripheral mononuclear cells, is HCMV genome-positive but immediate-early-negative. Mechanistic studies demonstrate that HCMV promotes the differentiation of HPCs into this monocyte subset by activating cellular signal transducer and activator of transcription 3 (STAT3). In turn, this monocyte subset generates a high level of nitric oxide (NO) to silence HCMV immediate-early transcription and promote viral latency. By contrast, the US28-knockout HCMV mutant, which is incapable of activating STAT3, fails to reprogramme the HPCs and achieve latency. Our findings reveal that via activating the STAT3-iNOS-NO axis, HCMV differentiates human HPCs into a longevous, immunosuppressive monocyte subset for viral latency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537872 | PMC |
http://dx.doi.org/10.1038/s41564-018-0131-9 | DOI Listing |
Inflamm Regen
December 2024
Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) act together to regulate blood pressure and systemic blood flow by appropriately adjusting blood vessel diameter in response to biochemical or biomechanical stimuli. Ion channels that are expressed in these cells regulate membrane potential and cytosolic Ca concentration ([Ca]) in response to such stimuli. The subsets of these ion channels involved in Ca signaling often form molecular complexes with intracellular molecules via scaffolding proteins.
View Article and Find Full Text PDFOpen Med (Wars)
December 2024
Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
Background: Atherosclerosis is a lipid-driven inflammatory disease characterized by plaque formation in major arteries. These plaques contain lipid-rich macrophages that accumulate through monocyte recruitment, local macrophage differentiation, and proliferation.
Objective: We identify the macrophage subsets that are closely related to atherosclerosis and reveal the key pathways in the progression of atherosclerotic disease.
Biol Direct
December 2024
Department of Obstetrics and Gynecology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Background: Intrauterine adhesion (IUA) is a common cause of clinically refractory infertility, and there exists significant heterogeneity in the treatment outcomes among IUA patients with the similar severity after transcervical resection of adhesion(TCRA). The underlying mechanism of different treatment outcomes occur remains elusive, and the precise contribution of various cell subtypes in this process remains uncertain.
Results: Here, we performed single-cell transcriptome sequencing on 10 human endometrial samples to establish a single-cell atlas differences between patients who responded to estrogen therapy and those who did not.
Blood Genom Discov
October 2024
Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
Sickle cell trait (SCT) has been associated with alterations in various immune-related laboratory parameters including lower circulating lymphocyte counts. To further characterize the impact of SCT on the immune system, we performed flow cytometry of monocyte and lymphocyte immune cell subsets from peripheral blood mononuclear cells collected in a large, community-based cohort of SCT-positive (n = 68) and SCT-negative (n = 959) Black adults. SCT was significantly associated with lower proportions of CD8 and CD4 T cell subsets that include senescent-like markers of repeated immune system challenges.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
Introduction: Cardiovascular disease is the major cause of premature death in chronic kidney disease (CKD) and vascular damage is often detected belatedly, usually evaluated by expensive and invasive techniques. CKD involves specific risk factors that lead to vascular calcification and atherosclerosis, where inflammation plays a critical role. However, there are few inflammation-related markers to predict vascular damage in CKD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!