Background: Superficial temporal artery (STA) to superior cerebellar artery (SCA) bypass is associated with a relatively high risk of surgical complications, such as hematoma and/or edema caused by temporal lobe retraction. Therefore, the right side is typically used to avoid retraction of the left temporal lobe. In this report, we present a case of left STA-SCA bypass with anterior petrosectomy to avoid retraction of dominant-side temporal lobe and describe the surgical technique in detail.

Case Description: A 69-year-old man presented with gradual worsening of dysarthria and gait disturbance. Magnetic resonance imaging showed no signs of acute infarction, but digital subtraction angiography showed severe stenosis of basilar artery and faint flow in the distal basilar artery. On 3-dimensional computed tomography angiography, posterior communicating arteries were not visualized; we could identify the left SCA, but not the right SCA. Despite dual antiplatelet therapy, a small fresh brainstem infarct was detected 10 days after admission. To avert fatal brainstem infarction and further enlargement of the infarct, we performed left STA-SCA bypass with anterior petrosectomy to avoid retraction of the dominant-side temporal lobe. Postoperative imaging revealed no new lesions, such as infarction or temporal lobe contusional hematoma, and confirmed the patency of the bypass. Postoperative single-photon emission computed tomography demonstrated improved cerebral blood flow in the posterior circulation. The patient was transferred to another hospital for rehabilitation.

Conclusions: This method helps minimize the risk of injury to the temporal lobe, especially that of the dominant side.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2018.03.118DOI Listing

Publication Analysis

Top Keywords

temporal lobe
24
bypass anterior
12
anterior petrosectomy
12
avoid retraction
12
superficial temporal
8
cerebellar artery
8
left sta-sca
8
sta-sca bypass
8
petrosectomy avoid
8
retraction dominant-side
8

Similar Publications

Purpose: Tinnitus is considered a neurological disorder affecting both auditory and nonauditory networks. This study aimed to investigate the structural brain covariance network in tinnitus patients and analyze its altered topological properties.

Materials: Fifty three primary tinnitus patients and 67 age- and sex-matched healthy controls (HCs) were included.

View Article and Find Full Text PDF

BRAF inhibitor monotherapy in BRAFV600E-mutated pediatric low-grade glioma: a single center's experience.

Front Oncol

January 2025

Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta, GA, United States.

Background: Pediatric low-grade gliomas (pLGGs) have an overall survival of over 90%; however, patients harboring a BRAF alteration may have worse outcomes, particularly when treated with classic chemotherapy. Combined BRAF/MEK inhibition following incomplete resection demonstrated improved outcome in BRAF altered pLGG compared to combined carboplatin/vincristine chemotherapy and is now considered the standard FDA-approved treatment for this group of tumors. The aim herein was to investigate the efficacy and tolerability of single agent BRAF inhibitor treatment in BRAF altered pLGG.

View Article and Find Full Text PDF

Background: Cognitive decline may occur in patients with end-stage renal disease (ESRD), and is particularly severe in patients with ESRD undergoing hemodialysis; however, the mechanism of this relationship between cognitive decline and ESRD is unclear. Cortical-based structural and functional analysis can be used to understand these cortical changes and their relationship with cognitive decline in non-dialysis and maintenance dialysis ESRD patients. This study aimed to examine whether there was any correlation between alterations in cortical and resting-state function changes and cognitive decline in patients diagnosed with ESRD.

View Article and Find Full Text PDF

Enhancement of the nontumor component in newly diagnosed glioblastoma as a more accurate predictor of local recurrence location: a multicenter study.

Quant Imaging Med Surg

January 2025

Department of Radiology, Medical Imaging Institute of Tianjin, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.

Background: Although the spatial heterogeneity of glioblastoma (GBM) can be clearly mapped by the habitats generated by magnetic resonance imaging (MRI), the means to accurately predicting the spatial location of local recurrence (SLLR) remains a significant challenge. The aim of this study was to identify the different degrees enhancement of GBM, including the nontumor component and tumor component, and determine their relationship with SLLR.

Methods: A retrospective analysis was performed from three tertiary medical centers, totaling 728 patients with 109 radiation-induced temporal lobe necrosis (TLN) of nasopharyngeal carcinoma (NPC) and 619 with GBM.

View Article and Find Full Text PDF

Distinct subcellular localization of tau and alpha-synuclein in lewy body disease.

Acta Neuropathol Commun

January 2025

Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.

Lewy bodies and neurofibrillary tangles, composed of α-synuclein (α-syn) and tau, respectively, often are found together in the same brain and correlate with worsening cognition. Human postmortem studies show colocalization of α-syn and tau occurs in Lewy bodies, but with limited effort to quantify colocalization. In this study, postmortem middle temporal gyrus tissue from decedents (n = 9) without temporal lobe disease (control) or with Lewy body disease (LBD) was immunofluorescently labeled with antibodies to phosphorylated α-syn (p-α-syn), tau phosphorylated at Ser202/Thr205 (p-tau), or exposure of tau's phosphatase-activating domain (PAD-tau) as a marker of early tau aggregates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!