Resting-state functional connectivity predicts the ability to adapt arm reaching in a robot-mediated force field.

Neuroimage

NeuroRehabilitation Unit, School of Health, Sport and Bioscience, College of Applied Health and Communities, University of East London, Water Lane, E15 4LZ, London, United Kingdom. Electronic address:

Published: July 2018

Motor deficits are common outcomes of neurological conditions such as stroke. In order to design personalised motor rehabilitation programmes such as robot-assisted therapy, it would be advantageous to predict how a patient might respond to such treatment. Spontaneous neural activity has been observed to predict differences in the ability to learn a new motor behaviour in both healthy and stroke populations. This study investigated whether spontaneous resting-state functional connectivity could predict the degree of motor adaptation of right (dominant) upper limb reaching in response to a robot-mediated force field. Spontaneous neural activity was measured using resting-state electroencephalography (EEG) in healthy adults before a single session of motor adaptation. The degree of beta frequency (β; 15-25 Hz) resting-state functional connectivity between contralateral electrodes overlying the left primary motor cortex (M1) and the anterior prefrontal cortex (aPFC) could predict the subsequent degree of motor adaptation. This result provides novel evidence for the functional significance of resting-state synchronization dynamics in predicting the degree of motor adaptation in a healthy sample. This study constitutes a promising first step towards the identification of patients who will likely gain most from using robot-mediated upper limb rehabilitation training based on simple measures of spontaneous neural activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2018.03.054DOI Listing

Publication Analysis

Top Keywords

motor adaptation
16
resting-state functional
12
functional connectivity
12
spontaneous neural
12
neural activity
12
degree motor
12
robot-mediated force
8
force field
8
motor
8
upper limb
8

Similar Publications

Investigation of Sliding Mode Control in the Nonlinear Modeling of Cordless Jigsaws.

Sensors (Basel)

January 2025

Department of Electrical Engineering and Mechatronics, Faculty of Engineering, Vehicles and Mechatronics Institute, University of Debrecen, Ótemető Str. 2-4., H-4028 Debrecen, Hungary.

The aim of this paper was to reduce the current spikes in battery-powered saw motors by designing and implementing a sliding mode model-following adaptive controller. The proposed controller reduces overcurrent consumption, improves system energy efficiency, and effectively maximizes battery runtime, especially under high-load conditions. By applying nonlinear compensation techniques, the controller can ensure smooth motor operation, reduce mechanical stress, and prolong tool life.

View Article and Find Full Text PDF

Background/objectives: The main objective of this manuscript is to evaluate the effects of training, music, and movement intervention on motor functions, social engagement, and behaviors in autistic children.

Methods: Twenty-one children with a diagnosis of mild autism spectrum disorder (ASD), with an age range of 5-to-13 years, were divided into two groups: the experimental group ( = 10) and the control group ( = 11). All participants were examined before (T0) and after the intervention (T1) to evaluate their motor functions (Bruininks-Oseretsky Motor Performance Test (BOT-2)), maladaptive behavior (RCS (Response to Challenge Scale)), and enjoyment and engagement (PACES (Physical Activity Enjoyment Scale)).

View Article and Find Full Text PDF

Improving brain health via the central executive network.

J Physiol

January 2025

Functional Flow Solutions LLC, Albuquerque, New Mexico, USA.

Cognitive and physical stress have significant effects on brain health, particularly through their influence on the central executive network (CEN). The CEN, which includes regions such as the dorsolateral prefrontal cortex, anterior cingulate cortex and inferior parietal lobe, is central to managing the demands of cognitively challenging motor tasks. Acute stress can temporarily reduce connectivity within the CEN, leading to impaired cognitive function and emotional states.

View Article and Find Full Text PDF

The patients with Arthrogryposis-Renal dysfunction-Cholestasis (ARC) syndrome have genetic susceptibility to the opportunistic infections due to the involvement of VPS33B (vacuolar protein sorting 33 homolog B) in phagolysosome fusion in macrophages. Detailed pathologic studies in ARC patients are missing in literature due to the lack of autopsy. We described the first autopsy case of ARC syndrome in a 2-month-old male infant.

View Article and Find Full Text PDF

Contextual cues facilitate dynamic value encoding in the mesolimbic dopamine system.

Curr Biol

January 2025

Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

Adaptive behavior in a dynamic environmental context often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical component of theories of dopamine's function in learning, motivation, and motor control. Yet, how dopamine neurons are involved in the revaluation of cues when the world changes, to alter our behavior, remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!