The development of new biocompatible, biodegradable functionalized biopolymers that can serve as scaffold for tissue regeneration or work as carriers for different bioactive molecules such as drugs, proteins, and enzymes remains a continuous challenge that need to be extensively explored. For this purpose, three water-soluble cellulose derivatives; namely 4(celluloseamino) butyric acid (CABA) 2(celluloseamino) succinic acid (CASA), and 3(celluloseamino) propane sulfonic acids (CAPSA) were synthesized from microcrystalline cellulose (MCC) via esterification with tosyl chloride that was followed by nucleophilic substitution by the proper aminoalkyl acid derivative. The products were characterized by elemental analyses, FTIR, C NMR spectroscopy. The thermal stability, surface morphology, and the elemental composition of the new ampholytic biopolymers were also studied by TGA, EDX-SEM. The new ampholytic cellulose derivatives were evaluated for their in vitro cytotoxicity on normal human retina cell line (RPE1) by MTT assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2018.03.147 | DOI Listing |
Sci Rep
January 2025
Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
Cigarette filter microplastics are composed of cellulose acetate that does not undergo biological or photo-degradation. These microplastics are readily dispersed and can be found abundantly in water, soil, and air. These fibers possess high absorption capabilities, allowing them to collect and retain pollutants such as toxic elements.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China. Electronic address:
Water purification has always been a critical yet challenging issue. In this study, an organic-inorganic composite membrane was developed using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized bacterial cellulose (BC) nanofibers and hydroxyapatite nanowires (HAPNW) with tunable wettability for advanced membrane separation applications. The resulting free-standing TEMPO-BC/HAPNW filter membrane exhibited strong mechanical strength, high flexibility, exceptional deformability, and a high pure water flux of up to 800 L·m·h due to its porous architecture and inherent hydrophilicity.
View Article and Find Full Text PDFNano Lett
January 2025
National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
Wood particle boards are massively used in construction and household products. But they often raise health and environmental concerns because of the formaldehyde-based adhesives. More sustainable and high-strength particle boards are developed on a bio-based materials or their derivatives.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Biotechnol Adv
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:
The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!