Background: FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases.

Main Body: This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides. (1) Molecular phylogenetic analysis of FKBP family proteins revealed that the eight known Drosophila FKBPs share homology with the human FKBP12. This indicates a close evolutionary relationship, and possible origination from a common ancestor. (2) The known FKBPs contain FK domains, that is, a prolyl cis/trans isomerase (PPIase) domain that mediates immune suppression through inhibition of calcineurin. The dFKBP59, CG4735/Shutdown, CG1847, and CG5482 have a Tetratricopeptide receptor domain at the C-terminus, which regulates transcription and protein transportation. (3) FKBP51 and FKBP52 (dFKBP59), along with Cyclophilin 40 and protein phosphatase 5, function as Hsp90 immunophilin co-chaperones within steroid receptor-Hsp90 heterocomplexes. These immunophilins are potential drug targets in pathways associated with normal physiology and may be used to treat a variety of steroid-based diseases by targeting exocytic/endocytic cycling and vesicular trafficking. (4) By associating with presinilin, a critical component of the Notch signaling pathway, FKBP14 is a downstream effector of Notch activation at the membrane. Meanwhile, Shutdown associates with transposons in the PIWI-interacting RNA pathway, playing a crucial role in both germ cells and ovarian somas. Mutations in or silencing of dFKBPs lead to early embryonic lethality in Drosophila. Therefore, further understanding the mechanisms of FK506 and rapamycin binding to immunophilin FKBPs in endocrine, cardiovascular, and neurological function in both mammals and Drosophila would provide prospects in generating unique, insect specific therapeutics targeting the above cellular signaling pathways.

Conclusion: This review will evaluate the functional roles of FKBP family proteins, and systematically summarize the similarities and differences between FKBP proteins in Drosophila and Mammals. Specific therapeutics targeting cellular signaling pathways will also be discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870485PMC
http://dx.doi.org/10.1186/s12861-018-0167-3DOI Listing

Publication Analysis

Top Keywords

fkbp family
12
analysis fkbp
8
function mammals
8
mammals drosophila
8
drosophila fkbps
8
fk506 rapamycin
8
family proteins
8
specific therapeutics
8
therapeutics targeting
8
targeting cellular
8

Similar Publications

Sex and Age Differences in Glucocorticoid Signaling After an Aversive Experience in Mice.

Cells

December 2024

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Institute of Mental Health and Drug Discovery, School of Mental Health, Wenzhou Medical University, Ouhai District, Wenzhou 325000, China.

Background: glucocorticoids may play an important role in the formation of fear memory, which is relevant to the neurobiology of post-traumatic stress disorder (PTSD). In our previous study, we showed the glucocorticoid receptor (GR) forms a protein complex with FKBP51, which prevents translocation of GR into the nucleus to affect gene expression; this complex is elevated in PTSD patients and by fear-conditioned learning in mice, and disrupting this complex blocks the storage and retrieval of fear-conditioned memories. The timing of release of glucocorticoid relative to the formation of a traumatic memory could be important in this process, and remains poorly understood.

View Article and Find Full Text PDF

Oxysterol-binding protein (OSBP)-related proteins (ORPs) are a large family of lipid transfer proteins (LTPs) in mammals. ORPs mediate the countertransport of two distinct lipids at membrane contact sites (MCSs). ORP10 is localized via binding to ORP9 at the endoplasmic reticulum (ER)-endosome MCSs, where it mediates countertransport of phosphatidylinositol 4-phosphate (PI4P) and phosphatidylserine (PS).

View Article and Find Full Text PDF

Genome-wide identification and expression analyses of and gene family under salt and heat stress in L.

Physiol Mol Biol Plants

November 2024

Key Lab. of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing, 246133 China.

Unlabelled: As components of a family of proteins with peptidyl-prolyl isomerase activity family, FKBP (FK506-binding protein) and CYP (Cyclophilins) exert crucial roles in various physiological and biochemical processes such as cell signal transduction and stress resistance. The functions of the FKBP or CYP family have been extensively discussed in various organisms, while the comprehensive characterization of this family in remains unreported. In this study, a total of 22 and 26 genes were identified in the genome of , with highly conserved functional domains observed within each member of these gene families.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder clinically characterized by progressive muscular weakness and multisystem degeneration, which correlates with the size of CTG expansion and MBLN decrease. These changes induce a calcium and redox homeostasis imbalance in several models that recapitulate the features of premature tissue aging. In this study, we characterized the impact of a new family of FKBP12 ligands (generically named MPs or MP compounds) designed to stabilize FKBP12 binding to the ryanodine receptors and normalize calcium dysregulation under oxidative stress.

View Article and Find Full Text PDF

Rare monogenic disorders often exhibit significant phenotypic variability among individuals sharing identical genetic mutations. Bruck syndrome (BS), a prime example, is characterized by bone fragility and congenital contractures, although with a pronounced variability among family members. BS arises from recessive biallelic mutations in FKBP10 or PLOD2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!