Models of metapopulations have focused on the effects of extinction and colonization rate upon metapopulation persistence and dynamics, assuming static landscapes wherein patches are neither created nor go extinct. However, for species living in ephemeral (patchy) habitats, landscapes are highly dynamic rather than static. In this article, we develop a lattice metapopulation model, of the patch occupancy type, based on interacting particle systems that incorporate explicitly both metapopulation and patch dynamics. Under this scenario, we study the effects of different regimes of patch dynamics upon metapopulation persistence. We analyze the lattice behavior by numerical simulations and a mean field approximation (MF). We show that metapopulation persistence and extinction are strongly influenced by the rate at which the landscape changes, in addition to the amount of habitat destroyed. We derive MF analytical expressions for extinction thresholds related to landscape properties such as habitat suitability and patch average lifetime. Using numerical simulations, we also show how these thresholds are quantitatively overestimated by the MF equations, although the qualitative behavior of the spatial model is well explained by the MF when the array of habitat patches is dynamic or static but connected in space and time. The implications for conservation are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/303407 | DOI Listing |
Ecol Lett
January 2025
Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.
Whether large-scale variation in lineage diversification rates can be predicted by species properties at the population level is a key unresolved question at the interface between micro- and macroevolution. All else being equal, species with biological attributes that confer metapopulation stability should persist more often at timescales relevant to speciation and so give rise to new (incipient) forms that share these biological traits. Here, we develop a framework for testing the relationship between metapopulation properties related to persistence and phylogenetic speciation rates.
View Article and Find Full Text PDFPrev Vet Med
November 2024
Quantitative Veterinary Epidemiology group, Wageningen University and Research Centre, the Netherlands; Biometris, Wageningen University and Research Centre, the Netherlands.
Bovine tuberculosis (bTB) has a complex infection ecology and is difficult to control in many countries, including Ireland. For many years, the Irish national bTB eradication programme relied on cattle-based control measures, including test-and-removal with related movement restrictions. In the early 2000s, badger culling was added as a part of the control measure in the national programme.
View Article and Find Full Text PDFScience
December 2024
School of the Environment, The University of Queensland, St. Lucia, Australia.
Proc Biol Sci
November 2024
Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00925, USA.
Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations across space, including their sign, magnitude, causes and characteristic scales. These have important implications for metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local, regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and decadal timescales and explored the relationship of synchrony to geographical distance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!