Background/aims: Epidermal growth factor receptor variant III (EGFRvIII), the most frequent EGFR variant, is constitutively activated without binding to EGF and is correlated with a poor prognosis. CH12, a human-mouse chimeric monoclonal antibody, has been developed in our laboratory and selectively binds to overexpressed EGFR and EGFRvIII. A previous study had reported that EGFR could influence autophagic activity, and autophagy is closely related to tumor development and the response to drug therapy. In this study, we aimed to elucidate the effect of CH12 on autophagy and efficacy of combining CH12 with an autophagy inhibitor against EGFRvIII-positive tumors.
Methods: EGFRvIII was overexpressed in liver cancer, glioblastoma and breast cancer, and the change in the autophagy-relevant protein levels was analyzed by western blot assays, LC3 punctate aggregation was analyzed by immunofluorescence. The interaction of Beclin-1 and Rubicon was assessed by co-immunoprecipitation (Co-IP) after CH12 treatment. The efficacy of ATG7 or Beclin-1 siRNA in combination with CH12 in Huh-7-EGFRvIII cells was assessed by CCK-8 assays. The autophagy and apoptosis signaling events in Huh-7-EGFRvIII cells upon treatment with control, CH12, siRNA or combination for 48 h were assessed by western blot assays.
Results: Our results showed that, in cancer cell lines overexpressing EGFRvIII, only the liver cancer cell lines Huh-7 and PLC/PRF/5 suggested autophagy activation. We then investigated the mechanism of autophagy activation after EGFRvIII overexpression. The results showed that EGFRvIII interacted with Rubicon, an autophagy inhibition protein, and released Beclin-1 to form the inducer complex, thus contributing to autophagy. In addition, CH12, via inhibiting the phosphorylation of EGFRvIII, promoted the interaction of EGFRvIII with Rubicon, further inducing autophagy. In vitro assays suggested that knocking down the expression of the key proteins ATG7 or Beclin-1 in the autophagy pathway with siRNA inhibits tumor cell proliferation. Combining autophagy-related proteins 7 (ATG7) or Beclin-1 siRNA with CH12 in Huh-7-EGFRvIII cells showed better inhibition of cell proliferation.
Conclusion: EGFRvIII could induce autophagy, and CH12 treatment could improve autophagy activity in EGFRvIII-positive liver cancer cells. The combination of CH12 with an autophagy inhibitor or siRNA against key proteins in the autophagy pathway displayed more significant efficacy on EGFRvIII-positive tumor cells than monotherapy, and induced cell apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000488425 | DOI Listing |
Comb Chem High Throughput Screen
January 2025
Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.
Background: Methotrexate (MTX) effectively eliminates cancerous cells but can also cause inflammation intestinal, known as mucositis. Forsythiaside A (FTA) from Forsythia suspensa has shown promise in relieving mucositis by targeting the NLRP3 pathways. Since NLRP3 inflammasome activation is negatively regulated by autophagy, this study explores how FTAmediated autophagy affects NLRP3 inflammasome in treating MTX-induced intestinal inflammation.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
Hydrogen peroxide (HO) plays a critical role in the regulation and progress of autophagy, an essential recycling process that influences cellular homeostasis and stress response. Autophagy is characterized by the formation of intracellular vesicles analogous to recycle "bags" called autophagosomes, which fuse with lysosomes to form autolysosomes, eventually ending up as lysosomes. We have developed two novel autophagic vesicle-targeted peptide-based sensors, for HO and for pH, to simultaneously track HO and pH dynamics within autophagic vesicles as autophagy advances.
View Article and Find Full Text PDFOpen Life Sci
January 2025
Oral Implantology Department, Suzhou Stomatological Hospital, Suzhou 215005, China.
Dental pulp stem cells hold significant prospects for tooth regeneration and repair. However, a comprehensive understanding of the molecular differences between dental pulp stem cells (DPSC, from permanent teeth) and stem cells from human exfoliated deciduous teeth (SHED, from deciduous teeth) remains elusive, which is crucial for optimizing their therapeutic potential. To address this gap, we employed a novel data-independent acquisition (DIA) proteomics approach to compare the protein expression profiles of DPSC and SHED.
View Article and Find Full Text PDFBMC Gastroenterol
January 2025
Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
Background: Neuregulin (NRG) family is involved in energy metabolism, among which NRG1 is a neuregulin proved to play a protective role in MAFLD cells. But the presice echanism has not been fully illustrated. This study aimed to investigate the role of NRG1 via the ERK/SIRT1 signaling in the pathogenesis of MAFLD.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Otorhinolaryngology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!