The sensitivity calculation of airborne gamma-ray spectrometer (AGS) is usually performed by on-ground or in-flight calibration. However, both methods are cost-ineffective or not permissive, especially for artificial radioisotopes with short half-lives. Alternative to these methods is the Monte Carlo simulation, which has been widely applied over the last few decades. The greatest challenge to the practicability of the Monte Carlo simulation in the AGS calibration is its low computational efficiency for ensuring an acceptable reliability. This article proposes a hybrid numerical method for the sourceless AGS calibration by combining the deterministic point-kernel approach and the Monte Carlo simulation. This method is not only more efficient than the source-based calibration by an empirical method, but also independent of the source availability for on-ground or in-flight calibration. For a given soil test model, AGS sensitivities calculated by this hybrid method agree well with those obtained from the empirical method for the in-flight calibration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2018.03.009DOI Listing

Publication Analysis

Top Keywords

in-flight calibration
12
monte carlo
12
carlo simulation
12
hybrid method
8
method sourceless
8
sensitivity calculation
8
calculation airborne
8
airborne gamma-ray
8
gamma-ray spectrometer
8
on-ground in-flight
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!