Sugar based low molecular weight gelators (LMWGs) are useful small molecules that can form reversible supramolecular gels with many applications. Selective functionalization of common monosaccharides has resulted in several classes of effective LMWGs. Recently we found that certain peracetylated sugars containing anomeric triazole functional groups were effective gelators. In this study we synthesized two series of 4,6-O-benzylidene acetal protected β-1,2,3-triazolyl glycoside of D-glucose and N-acetyl D-glucosamine derivatives and evaluated their self-assembling properties in a few solvents. Several gelators were obtained and the gelation properties of these compounds rely on the structures of the 4-triazolyl substituents. Typically, alkyl derivatives resulted in effective gelation in organic solvents and aqueous mixtures of ethanol and dimethyl sulfoxide. But further acetylation of these compounds resulted in loss of gelation properties. The gels were characterized using optical microscopy, rheology, and FTIR spectroscopy. We also analyzed the molecular assemblies, using H NMR spectroscopy to probe the influences of the hydroxyl, amide, and triazole functional groups. Naproxen was used as a model drug and it formed co-gels with compound 25 in DMSO water mixtures. Using UV spectroscopy, we found that naproxen was slowly released from the gel to aqueous solution. The general structure and gelation trend obtained here can be useful in designing sugar based biomaterials. We expect that further structural optimization can lead to more effective gelators that are compatible with different drug molecules for encapsulation and sustained release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2018.02.011 | DOI Listing |
Nat Commun
January 2025
College of Materials Science and Technology; Key Laboratory of Material Preparation and Protection for Harsh Environment; Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China.
With the development of nanotechnology, nano-functional units of different dimensions, morphologies, and sizes exhibit the potential for efficient microwave absorption (MA) performance. However, the multi-unit coupling enhancement mechanism triggered by the alignment and orientation of nano-functional units has been neglected, hindering the further development of microwave absorbing materials (MAMs). In this paper, two typical ZIF-derived nanomaterials are self-assembled into two-dimensional ordered polyhedral superstructures by the simple ice template method.
View Article and Find Full Text PDFNat Commun
January 2025
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
We present an efficient strategy for on-surface engineering of organic metal-free supramolecular complexes with long-term spin protection. By vacuum deposition of azafullerene (CN) monomers on a pre-deposited template layer of [10]cycloparaphenylene ([10]CPP) nanohoops on Au(111) surface we exploit the molecular shape matching between the CN and [10]CPP for the azafullerene encapsulation with nanohoops in a guest-host complexation geometry. CN⊂[10]CPP supramolecular complexes self-assemble into an extended two-dimensional hexagonal lattice yielding a high density network of stable spin-1/2 radicals.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
Diblock copolyelectrolytes have significant potential in applications such as solid-state single-ion conductors, but precisely controlling their nanostructures for efficient ion transport remains a challenge. In this study, we explore the phase behavior and microphase transitions of AX BY-type diblock copolyelectrolytes under alternating electric fields using coarse-grained molecular dynamics simulations. We systematically investigate the effects of various electric field features, including unipolar and bipolar square-waves, as well as offset and non-offset sine-waves, focusing on how field strength and period influence the self-assembling morphology of the copolyelectrolytes.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy.
The development of anticancer diagnostic and therapeutic strategies is of crucial importance to improve efficacy and therapeutic specificity. Here, we describe the synthesis and characterization of fluorescent self-assembling nanomicelles (NMs) based on a biocompatible polysaccharide (cellulose, CE) functionalized with a tetraphenyl ethylene derivative (TPEHy) and loaded with Doxorubicin (DOX) with aggregation-induced emission (AIE) properties and pH-dependent drug release. We obtained CE-TPEHy-NMs with an average diameter of 60 ± 17 nm for unloaded NMs and 86 ± 25 nm for NMs loaded with DOX, respectively.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy.
In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!