This work reports a cobalt(II)/ N-hydroxyphthalimide (NHPI)-catalyzed cross-dehydrogenative oxidative coupling of N-aryl tetrahydroisoquinolines with various pro-nucleophiles, such as indoles, nitroalkanes, and trialkylphosphites, active methylene compounds, and other nucleophiles, such as cyanide (ethyl cyanoformate), at room temperature under aerobic conditions. The present protocol is operationally simple and can be carried out without photoirradiation and under peroxide-free conditions, even on a gram scale, to afford the products in good to excellent yields. On the basis of mass spectrometry and control experiments, a catalytic reaction pathway has been proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.8b00203DOI Listing

Publication Analysis

Top Keywords

room temperature
8
temperature aerobic
8
cobaltii/ n-hydroxyphthalimide-catalyzed
4
n-hydroxyphthalimide-catalyzed cross-dehydrogenative
4
cross-dehydrogenative coupling
4
coupling reaction
4
reaction room
4
aerobic condition
4
condition work
4
work reports
4

Similar Publications

Room-Temperature Magnetic Antiskyrmions in Canted Ferrimagnetic CoHo Alloy Films.

Adv Mater

January 2025

School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.

Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics.

View Article and Find Full Text PDF

Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.

View Article and Find Full Text PDF

Electrochemistry-enabled Ir-catalyzed C-H/N-N bond activation facilitates [3+2] annulation of phenidones with propiolates.

Chem Commun (Camb)

January 2025

Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.

A mild and efficient [3+2] annulation of phenidones with propiolates has been developed to access -substituted indole alkylamides, enabled by merging electrochemistry with iridium catalysis using an undivided cell at room temperature. The mechanistic studies have confirmed that the electrochemically mediated catalytic cycle of Ir-Ir-Ir exhibits enhanced efficiency, mild reaction conditions, and unconventional selectivity.

View Article and Find Full Text PDF

To realize the optical transfer of electron spin information, developing a semiconductor layer for efficient transport of spin-polarized electrons to the active layers is necessary. In this study, electron spin transport from a GaAs/AlGaAs superlattice (SL) barrier to InGaAs quantum dots (QDs) is investigated at room temperature through a combination of time-resolved photoluminescence and rate equation analysis, separating the two transport processes from the GaAs layer around the QDs and SL barrier. The electron transport time in the SL increases for a thicker quantum well (QW) of SL due to the weaker wavefunction overlap between adjacent QWs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!