Purpose: Mitochondria have been implicated in initiating and/or amplifying the biological effects of ionizing radiation not mediated via damage to nuclear DNA. To help elucidate the underlying mechanisms, energy deposition patterns to mitochondria and radiation damage to their DNA have been modelled.

Methods: Track-structure simulations have been performed with PARTRAC biophysical tool for Co γ-rays and 5 MeV α-particles. Energy deposition to the cell's mitochondria has been analyzed. A model of mitochondrial DNA reflecting experimental information on its structure has been developed and used to assess its radiation-induced damage.

Results: Energy deposition to mitochondria is highly inhomogeneous, especially at low doses. Although a dose-dependent fraction of mitochondria sees no energy deposition at all, the hit ones receive rather high amounts of energy. Nevertheless, only little damage to mitochondrial DNA occurs, even at large doses.

Conclusion: Mitochondrial DNA does not represent a critical target for radiation effects. Likely, the key role of mitochondria in radiation-induced biological effects arises from the communication between mitochondria and/or with the nucleus. Through this signaling, initial modifications in a few heavily hit mitochondria seem to be amplified to a massive long-term effect manifested in the whole cell or even tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2018.1450532DOI Listing

Publication Analysis

Top Keywords

energy deposition
20
mitochondrial dna
12
mitochondria
9
track-structure simulations
8
deposition patterns
8
patterns mitochondria
8
damage dna
8
biological effects
8
energy
6
dna
6

Similar Publications

In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines.

View Article and Find Full Text PDF

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.

View Article and Find Full Text PDF

Effect of Monosodium Urate Crystal Deposition on Atherosclerotic Carotid Plaques.

J Clin Med

January 2025

Departments of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.

The accumulation of uric acid in arteriosclerotic plaques has recently attracted attention. Because the interaction between hyperuricemia and atherosclerosis is complex, the details remain obscure. We aimed to elucidate the clinical effect of monosodium urate monohydrate (MSU) deposition on carotid plaques.

View Article and Find Full Text PDF

Calcium phosphates are often used for biomedical applications. Hydroxyapatite, for example, has a wide range of applications because it mimics the mineral component of natural bone. Widespread interest in the catalytic properties of ceria is due to its use in automotive catalytic converters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!