A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of morphological variations on cervical spine segmental responses from inertial loading. | LitMetric

Objectives: The objective of this study was to investigate the influence of morphological variations in osteoligamentous lower cervical spinal segment responses under postero-anterior inertial loading.

Methods: A parametric finite element model of the C5-C6 spinal segment was used to generate models. Variations in the vertebral body and facet depth (anteroposterior), posterior process length, intervertebral disc height, facet articular process height and slope, segment orientation ranging from lordotic to straight, and segment size were parameterized. These variations included male-female differences. A Latin hypercube sampling method was used to select parameter values for model generation. Forces and moments associated with the inertial loading were applied to the generated model segments. The 7 parameters were grouped as local or global depending on the number of spinal components involved in the shape variation. Four output responses representing overall segmental and soft tissue responses were analyzed for each model variation: response angle of the segment, anterior longitudinal ligament stretch, anterior capsular ligament stretch, and facet joint compression in the posterior region. Pearson's correlation coefficient was used to compute the correlations of these output responses with morphological variations.

Results: Fifty models were generated from the parameterized model using a Latin hypercube sampling technique. Variation in response angle among the models was 4° and was most influenced by change in the combined dimension of vertebral body and facet depth, followed by size of the segment. The maximum anterior longitudinal ligament stretch varied between 0.1 and 0.3 and was strongly influenced by the change in the segment orientation. The anterior facet joint region sustained tension, whereas the posterior region sustained compression. For the anterior capsular ligament stretch, the most influential global variation was segment orientation, whereas the most influential local variations were the facet height and facet angle parameters. In the case of posterior facet joint compression, segment orientation was again most influential, whereas among the local variations, the facet angle had the most influence.

Conclusion: Shape variations in the intervertebral disc influenced segmental rotation and ligament responses; however, the influence of shape variations in the facet joint was confined to capsular ligament responses. Response angle was most influenced by the vertebral body depth variations, explaining greater segmental rotations in female spines. Straighter spine segments sustained greater posterior facet joint compression, which may offer an explanation for the higher incidence of whiplash-associated disorders among females, who exhibit a straighter cervical spine. The anterior longitudinal ligament stretch was also greater in straighter segments. These findings indicate that the morphological features specific to the anatomy of the female cervical spine may predispose it to injury under inertial loading.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15389588.2017.1403017DOI Listing

Publication Analysis

Top Keywords

ligament stretch
20
facet joint
20
segment orientation
16
cervical spine
12
inertial loading
12
vertebral body
12
response angle
12
anterior longitudinal
12
longitudinal ligament
12
capsular ligament
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!