Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499459 | PMC |
Am J Respir Cell Mol Biol
October 2024
Georgia Institute of Technology, Biological Sciences, Atlanta, Georgia, United States;
The lung is densely innervated by sensory nerves, the majority of which are derived from the vagal sensory neurons. Vagal ganglia consist of two different ganglia, termed nodose and jugular ganglia, with distinct embryonic origins, innervation patterns, and physiological functions in the periphery. Since nodose neurons constitute the majority of the vagal ganglia, our understanding of the function of jugular nerves in the lung is very limited.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
July 2024
Department of Physiology, University of Kentucky, Lexington, Kentucky, United States.
Sulfur dioxide (SO), a common environmental and industrial air pollutant, possesses a potent effect in eliciting cough reflex, but the primary type of airway sensory receptors involved in its tussive action has not been clearly identified. This study was carried out to determine the relative roles of three major types of vagal bronchopulmonary afferents [slowly adapting receptors (SARs), rapidly adapting receptors (RARs), and C-fibers] in regulating the cough response to inhaled SO. Our results showed that inhalation of SO (300 or 600 ppm for 8 min) evoked an abrupt and intense stimulatory effect on bronchopulmonary C-fibers, which continued for the entire duration of inhalation challenge and returned toward the baseline in 1-2 min after resuming room air-breathing in anesthetized and mechanically ventilated mice.
View Article and Find Full Text PDFRespiration
March 2024
Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
Introduction: Targeting the parasympathetic nervous system innervating the airway with pharmacologic products has been proved to improve the clinical outcomes of severe asthma. Bronchial cryo-denervation (BCD) is a novel non-pharmacologic treatment for severe asthma using an endobronchial cryo-balloon administered via bronchoscopy to denervate parasympathetic pulmonary nerves. Preclinical studies have demonstrated that BCD significantly disrupted vagal innervation in the lung.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!