Efficient hydrogelators will gel water fast and at low concentrations. Small molecule gelling agents that assemble into fibers and fiber networks are particularly effective hydrogelators. Whereas it is straightforward to determine their critical concentration for hydrogelation, the kinetics of hydrogelation is more difficult to study because it is often very fast, occurring on the subsecond time scale. We used a 3D focusing microfluidic device combined with fluorescence microscopy and in situ small-angle X-ray scattering (SAXS) to study the fast pH-induced gelation of a model small molecule gelling agent at the millisecond time scale. The gelator is a 1,3,5-benzene tricarboxamide which upon acidification assembles into nanofibrils and fibril networks that show a characteristic photoluminescence. By adjusting the flow rates, the regime of early nanofibril formation and gelation could be followed along the microfluidic reaction channel. The measured fluorescence intensity profiles were analyzed in terms of a diffusion-advection-reaction model to determine the association rate constant, which is in a typical range for the small molecule self-assembly. Using in situ SAXS, we could determine the dimensions of the fibers that were formed during the early self-assembly process. The detailed structure of the fibers was subsequently determined by cryotransmission electron microscopy. The study demonstrates that 3D focusing microfluidic devices are a powerful means to study the self-assembly on the millisecond time scale, which is applied to reveal early state of hydrogelation kinetics. In combination with in situ fluorescence and X-ray scattering, these experiments provide detailed insights into the first self-assembly steps and their reaction rates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b00384DOI Listing

Publication Analysis

Top Keywords

hydrogelation kinetics
12
small molecule
12
time scale
12
microfluidic device
8
molecule gelling
8
study fast
8
focusing microfluidic
8
x-ray scattering
8
millisecond time
8
hydrogelation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!