The potential consequences of nuclear events and the complexity of nuclear waste management motivate the development of selective solid-phase sorbents to provide enhanced protection. Herein, it is shown that 2D covalent organic frameworks (COFs) with unique structures possess all the traits to be well suited as a platform for the deployment of highly efficient sorbents such that they exhibit remarkable performance, as demonstrated by uranium capture. The chelating groups laced on the open 1D channels exhibit exceptional accessibility, allowing significantly higher utilization efficiency. In addition, the 2D extended polygons packed closely in an eclipsed fashion bring chelating groups in adjacent layers parallel to each other, which may facilitate their cooperation, thereby leading to high affinity toward specific ions. As a result, the amidoxime-functionalized COFs far outperform their corresponding amorphous analogs in terms of adsorption capacities, kinetics, and affinities. Specifically, COF-TpAb-AO is able to reduce various uranium contaminated water samples from 1 ppm to less than 0.1 ppb within several minutes, well below the drinking water limit (30 ppb), as well as mine uranium from spiked seawater with an exceptionally high uptake capacity of 127 mg g . These results delineate important synthetic advances toward the implementation of COFs in environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201705479 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Northeast Normal University, Department of Chemistry, Renmin Street 5268, 130024, Changchun, CHINA.
Aqueous zinc-iodine batteries (AZIBs) are gaining attention as next-generation energy storage systems due to their high theoretical capacity, enhanced safety, and cost-effectiveness. However, their practical application is hindered by challenges such as slow reaction kinetics and the persistent polyiodide shuttle effect. To address these limitations, we developed a novel class of covalent organic frameworks (COFs) featuring electron-rich nitrogen sites with varied density and distribution (N1-N4) along the pore walls.
View Article and Find Full Text PDFSmall
January 2025
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea.
The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view.
View Article and Find Full Text PDFSmall
January 2025
Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, Anhui Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246133, P. R. China.
The catalytic conversion of CO into valuable chemicals using metalized covalent organic frameworks (COFs) as catalysts is a promising method for reducing atmospheric CO levels. Herein, a aldehyde-amine COF (TAPT-Tp) at room temperature and pressure and their metallized results is synthesized, Ni-TAPT-Tp and Ti-TAPT-Tp. The photocatalytic results indicate that the CO to CO reduction rate is 6182.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
Matrix effects pose a significant challenge in food analysis for the quantitative analysis of complex food samples. Herein, a novel magnetic covalent organic framework nanocomposite and the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction-based stable isotope labeling (SIL) method were presented for highly selective and sensitive detection of steroid hormones in food samples using HPLC-MS/MS. The nanocomposite, FeO@TAPB-COF, with a core-shell structure exhibited high adsorption capacities for steroid hormones.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
Chiral binaphthols (BINOL)-metal combinations serve as powerful catalysts in asymmetric synthesis. Their chiral induction mode, however, typically relies on multifarious non-covalent interactions between the substrate and the BINOL ligand. In this work, we demonstrate that the chiral-at-metal stereoinduction mode could serve as an alternative mechanism for BINOL-metal catalysis, based on mechanistic studies of BINOL-aluminum-catalyzed asymmetric hydroboration of heteroaryl ketones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!