Truncating mutations underlie a spectrum of dominant hereditary motor neuropathies.

Neurol Genet

RILD Wellcome Wolfson Centre (C.G.S., H.H., K.E.S.B., M.A.R., B.A.C., J.K.C., E.L.B., A.H.C.), Royal Devon & Exeter NHS Foundation Trust, Exeter; Wessex Clinical Genetics Service (C.G.S.), Princess Anne Hospital, Southampton, United Kingdom; Neurogenetics Group (D.B., I.M., P.D.J., T.D., J.B.), Center for Molecular Neurology, VIB; Laboratory of Neuromuscular Pathology (D.B., I.M., P.D.J., T.D., J.B.), Institute Born-Bunge, University of Antwerp; Department of Neurology (M.B., D.W.), University of Minnesota, Minneapolis, MN; Department of Neurology (P.D.J., J.B.), Neuromuscular Reference Centre, Antwerp University Hospital, Antwerpen, Belgium; Clinical Genetics (M.M.M.), St. George's University of London, London, United Kingdom; Biomedical Science (R.D.B.), Florida Atlantic University, Jupiter Campus, FL; and Department of Neurology (J.D.B.), University Hospital Ghent, Ghent, Belgium; Peninsula Clinical Genetics Service (E.L.B.), Royal Devon and Exeter Hospital, Exeter, United Kingdom.

Published: April 2018

Objective: To identify the genetic cause of disease in 2 previously unreported families with forms of distal hereditary motor neuropathies (dHMNs).

Methods: The first family comprises individuals affected by dHMN type V, which lacks the cardinal clinical feature of vocal cord paralysis characteristic of dHMN-VII observed in the second family. Next-generation sequencing was performed on the proband of each family. Variants were annotated and filtered, initially focusing on genes associated with neuropathy. Candidate variants were further investigated and confirmed by dideoxy sequence analysis and cosegregation studies. Thorough patient phenotyping was completed, comprising clinical history, examination, and neurologic investigation.

Results: dHMNs are a heterogeneous group of peripheral motor neuron disorders characterized by length-dependent neuropathy and progressive distal limb muscle weakness and wasting. We previously reported a dominant-negative frameshift mutation located in the concluding exon of the gene encoding the choline transporter (CHT), leading to protein truncation, as the likely cause of dominantly-inherited dHMN-VII in an extended UK family. In this study, our genetic studies identified distinct heterozygous frameshift mutations located in the last coding exon of , predicted to result in the truncation of the CHT C-terminus, as the likely cause of the condition in each family.

Conclusions: This study corroborates C-terminal CHT truncation as a cause of autosomal dominant dHMN, confirming upper limb predominating over lower limb involvement, and broadening the clinical spectrum arising from CHT malfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866402PMC
http://dx.doi.org/10.1212/NXG.0000000000000222DOI Listing

Publication Analysis

Top Keywords

hereditary motor
8
motor neuropathies
8
truncating mutations
4
mutations underlie
4
underlie spectrum
4
spectrum dominant
4
dominant hereditary
4
neuropathies objective
4
objective identify
4
identify genetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!