Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Strain-coupled multiferroic heterostructures provide a path to energy-efficient, voltage-controlled magnetic nanoscale devices, a region where current-based methods of magnetic control suffer from Ohmic dissipation. Growing interest in highly magnetoelastic materials, such as Terfenol-D, prompts a more accurate understanding of their magnetization behavior. To address this need, we simulate the strain-induced magnetization change with two modeling methods: the commonly used unidirectional model and the recently developed bidirectional model. Unidirectional models account for magnetoelastic effects only, while bidirectional models account for both magnetoelastic and magnetostrictive effects. We found unidirectional models are on par with bidirectional models when describing the magnetic behavior in weakly magnetoelastic materials (e.g., Nickel), but the two models deviate when highly magnetoelastic materials (e.g., Terfenol-D) are introduced. These results suggest that magnetostrictive feedback is critical for modeling highly magnetoelastic materials, as opposed to weaker magnetoelastic materials, where we observe only minor differences between the two methods' outputs. To our best knowledge, this work represents the first comparison of unidirectional and bidirectional modeling in composite multiferroic systems, demonstrating that back-coupling of magnetization to strain can inhibit formation and rotation of magnetic states, highlighting the need to revisit the assumption that unidirectional modeling always captures the necessary physics in strain-mediated multiferroics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913354 | PMC |
http://dx.doi.org/10.1038/s41598-018-23020-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!