Arterial Wall Imaging in Pediatric Stroke.

Stroke

From the Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, ON (N.D., I.Y., M.S., R.A., D.M., G.d.V., M.M.); Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON (P.M., M.S.); Department of Diagnostic Imaging, Toronto Western Hospital, ON (D.M.); and Division of Neurology, Lucile Packard Children's Hospital Stanford, CA (J.E.).

Published: April 2018

Background And Purpose: Arteriopathy is common in childhood arterial ischemic stroke (AIS) and predicts stroke recurrence. Currently available vascular imaging techniques mainly image the arterial lumen rather than the vessel wall and have a limited ability to differentiate among common arteriopathies. We aimed to investigate the value of a magnetic resonance imaging-based technique, namely noninvasive arterial wall imaging (AWI), for distinguishing among arteriopathy subtypes in a consecutive cohort of children presenting with AIS.

Methods: Children with confirmed AIS and magnetic resonance angiography underwent 3-Tesla AWI including T1-weighted 2-dimensional fluid-attenuated inversion recovery fast spin echo sequences pre- and post-gadolinium contrast. AWI characteristics, including wall enhancement, wall thickening, and luminal stenosis, were documented for all.

Results: Twenty-six children with AIS had AWI. Of these, 9 (35%) had AWI enhancement. AWI enhancement was associated with anterior circulation magnetic resonance angiography abnormality and cortical infarction in 8 of 9 (89%) children and normal magnetic resonance angiography with posterior circulation subcortical infarction in 1 (1 of 9; 11%) child. AWI enhancement was not seen in 17 (65%), 10 (59%) of whom had an abnormal magnetic resonance angiography. Distinct patterns of pre- and postcontrast signal abnormality were demonstrated in the vessel wall in the region of interest in children with transient cerebral arteriopathy, arterial dissection, primary central nervous system angiitis, dissecting aneurysm, and cardioembolic stroke.

Conclusions: AWI is a noninvasive, high-resolution magnetic resonance AWI technique, which can be successfully used in children presenting with AIS. Patterns of AWI enhancement are recognizable and associated with specific AIS pathogeneses. Further studies are required to assess the additional diagnostic utility of AWI over routine vascular imaging techniques, in childhood AIS.

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.117.019827DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
24
resonance angiography
16
awi enhancement
16
awi
11
arterial wall
8
wall imaging
8
vascular imaging
8
imaging techniques
8
vessel wall
8
children presenting
8

Similar Publications

Monitoring technology for Cr(VI) adsorption and reduction by NMR spectroscopy.

Chem Commun (Camb)

January 2025

Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China.

This study employs a low-field NMR (LF-NMR) method to investigate Cr(VI) adsorption and reduction in solid-liquid systems, focusing on three cellulose-based amine adsorbents. NMR revealed the effects of molecular structure on adsorption and reduction processes, providing insights into adsorbent design and mass transfer advantages for high-performance Cr(VI) adsorbents.

View Article and Find Full Text PDF

Extraction and Characterization of Inulin-Like Fructans from Hydroponically Grown Stevia rebaudiana Roots for Food Applications.

Plant Foods Hum Nutr

January 2025

Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.

Stevia rebaudiana is a plant native to South America known for producing steviol glycosides and fructans used in low-calorie and functional foods. This study aimed to cultivate and isolate inulin from hydroponically grown S. rebaudiana roots.

View Article and Find Full Text PDF

Background: The coexistence of sickle cell anemia and multiple sclerosis in a single patient presents a rare and challenging clinical scenario, possibly favoured by the interplay between chronic inflammatory states and autoimmune processes.

Methos/results: We present the case of a 36-year-old woman with sickle cell anemia who developed progressive neurological symptoms leading to frequent falls and paraparesis; magnetic resonance imaging showed many periventricular, infratentorial, and both cervical and dorsal spinal cord lesions, leading to a diagnosis of multiple sclerosis. After a multidisciplinary approach the patient was successfully started on ofatumumab.

View Article and Find Full Text PDF

Purpose Of Review: Our purpose was to discuss the advantages and disadvantages of various noninvasive imaging modalities in the evaluation of cardiovascular disease (CVD) in patients with autoimmune rheumatic diseases (ARDs). The detailed knowledge of imaging modalities will facilitate the diagnosis and follow up of CVD in ARDs.

Recent Findings: Autoimmune Rheumatic Diseases (ARDs) are characterized by alterations in immunoregulatory system of the body.

View Article and Find Full Text PDF

Improved deep canonical correlation fusion approach for detection of early mild cognitive impairment.

Med Biol Eng Comput

January 2025

Non-Invasive Imaging and Diagnostic Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.

Detection of early mild cognitive impairment (EMCI) is clinically challenging as it involves subtle alterations in multiple brain sub-anatomic regions. Among different brain regions, the corpus callosum and lateral ventricles are primarily affected due to EMCI. In this study, an improved deep canonical correlation analysis (CCA) based framework is proposed to fuse magnetic resonance (MR) image features from lateral ventricular and corpus callosal structures for the detection of EMCI condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!