Some species from Aspergillus section Nigri are morphologically very similar and altogether have been called A. niger aggregate. Although the species included in this group are morphologically very similar, they differ in their ability to produce mycotoxins and other metabolites and their taxonomical status has evolved continuously. Among them, A. niger and A. welwitschiae are ochratoxin A and fumonisin B producers and their detection and/or identification is of crucial importance for food safety. The aim of this study was the development of a real-time PCR-based method for simultaneous discrimination of A. niger and A. welwitschiae from other species of the A. niger aggregate isolated from coffee beans. One primer pair and a hybridization probe specific for detection of A. niger and A. welwitschiae strains were designed based on the BenA gene sequences, and used in a Real-time PCR assay for the rapid discrimination between both these species from all others of the A. niger aggregate. The Real-time PCR assay was shown to be 100% efficient in discriminating the 73 isolates of A. niger/A. welwitschiae from the other A. niger aggregate species analyzed as a negative control. This result testifies to the use of this technique as a good tool in the rapid detection of these important toxigenic species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2018.03.010DOI Listing

Publication Analysis

Top Keywords

niger aggregate
16
niger welwitschiae
12
real-time pcr-based
8
pcr-based method
8
rapid detection
8
niger
8
isolated coffee
8
aggregate species
8
species niger
8
real-time pcr
8

Similar Publications

N-Arylsulfonylated C-Homoaporphines as a New Class of Antiplatelet and Antimicrobial Agents.

ACS Med Chem Lett

January 2025

Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India.

A series of novel N-arylsulfonylated C-homoaporphine alkaloids were synthesized under microwave irradiation and evaluated for their antiplatelet and antimicrobial activities. Among the series, compounds , , , , , , , , and demonstrated highly potent (∼3-fold) platelet aggregation inhibitory activity than acetylsalicylic acid (IC = 21.34 μg/mL).

View Article and Find Full Text PDF

A few Aspergillus section Nigri species are involved in the ochratoxin A (OTA) contamination in grapes worldwide, and its occurrence is determined by the agro-climatic conditions of each region. The aim of this study was to examine the diversity of black aspergilli isolated from grapes, soil, and air from vineyards with different agro-climatic conditions. A total of four vineyards located in Catalonia were studied.

View Article and Find Full Text PDF

Zinc oxide nanoparticles are safe, non-toxic, and biocompatible. These NPs are used in food packaging materials, self-cleaning glass, ceramics, deodorants, sunscreens, paints, coatings, ointments, lotions, and as preservatives. This study explored the biological potential of ZnO nanoparticles synthesized using .

View Article and Find Full Text PDF

Drug-resistant tuberculosis (DR-TB) poses a significant public health challenge, particularly in resource-limited settings. The prevalence and management of DR-TB in African countries require comprehensive strategies to improve patient outcomes and control the spread of the disease. Aggregated routine data (from 2018 to 2022) on multidrug-resistant TB (MDR-TB) were collected from the National TB Programs (NTPs) from all six countries.

View Article and Find Full Text PDF

Green synthesis of bimetallic nanoparticles of noble metals is highly desirable in nanomedicine because of their potential use as anticoagulant, thrombolytic and anticancer agents. In this study, it was discovered that the filamentous fungus Aspergillus niger proved effective in producing bimetallic Ag-Au nanoparticles. A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!