Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heat stress (HS) is an important environmental factor that affects the growth and metabolism of edible fungi, but the molecular mechanism of the heat stress response (HSR) remains unclear. We previously reported that HS treatment increased the length between two hyphal branches and induced the accumulation of ganoderic acid biosynthesis and the gene expression of heat shock proteins (HSPs) in Ganoderma lucidum. In this study, we found that HS induced a significant increase in the cytosolic ROS concentration, and exogenously added ROS scavengers NAC, VC and NADPH oxidase (Nox) inhibitor DPI reduce the cytosolic ROS accumulation in G. lucidum. In addition, the phenomena of the increased gene expression and increased length between the two hyphal branches and the accumulation of GA biosynthesis induced by HS were mitigated. Furthermore, we investigated the effects of HS on Nox-silenced strains (NoxABi-10, NoxABi-11 and NoxRi-4, NoxRi-7) and found that the level of ROS concentration was lower than that in wild-type (WT) strains treated with HS. Additionally, Nox silenced strains reduced the HS-induced increase in HSP expression, the length between two hyphal branches and GA biosynthesis compared with the WT strain. These data indicate that HS-induced ROS participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in G. lucidum. In addition, these findings identified potential pathways linking ROS networks to HSR, physiological and metabolic processes in fungi and provide a valuable reference for studying the role of ROS in HSR, mycelium growth and secondary metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2018.02.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!