Backgound: Alcohol use disorder (AUD) is devastating and poorly treated, and innovative targets are actively sought for prevention and treatment. The orphan G protein-coupled receptor GPR88 is enriched in mesocorticolimbic pathways, and Gpr88 knockout mice show hyperactivity and risk-taking behavior, but a potential role for this receptor in drug abuse has not been examined.
Methods: We tested Gpr88 knockout mice for alcohol-drinking and -seeking behaviors. To gain system-level understanding of their alcohol endophenotype, we also analyzed whole-brain functional connectivity in naïve mice using resting-state functional magnetic resonance imaging.
Results: Gpr88 knockout mice showed increased voluntary alcohol drinking at both moderate and excessive levels, with intact alcohol sedation and metabolism. Mutant mice also showed increased operant responding and motivation for alcohol, while food and chocolate operant self-administration were unchanged. Alcohol place conditioning and alcohol-induced dopamine release in the nucleus accumbens were decreased, suggesting reduced alcohol reward in mutant mice that may partly explain enhanced alcohol drinking. Seed-based voxelwise functional connectivity analysis revealed significant remodeling of mesocorticolimbic centers, whose hallmark was predominant weakening of prefrontal cortex, ventral tegmental area, and amygdala connectional patterns. Also, effective connectivity from the ventral tegmental area to the nucleus accumbens and amygdala was reduced.
Conclusions: Gpr88 deletion disrupts executive, reward, and emotional networks in a configuration that reduces alcohol reward and promotes alcohol seeking and drinking. The functional connectivity signature is reminiscent of alterations observed in individuals at risk for AUD. The Gpr88 gene, therefore, may represent a vulnerability/resilience factor for AUD, and a potential drug target for AUD treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054571 | PMC |
http://dx.doi.org/10.1016/j.biopsych.2018.01.026 | DOI Listing |
Biol Psychiatry Glob Open Sci
October 2023
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
Background: Disrupted motivational control is a common-but poorly treated-feature of psychiatric disorders, arising via aberrant mesolimbic dopaminergic signaling. GPR88 is an orphan G protein-coupled receptor that is highly expressed in the striatum and therefore well placed to modulate disrupted signaling. While the phenotype of knockout mice suggests a role in motivational pathways, it is unclear whether GPR88 is involved in reward valuation and/or effort-based decision making in a sex-dependent manner and whether this involves altered dopamine function.
View Article and Find Full Text PDFAddict Biol
November 2022
Douglas Mental Health University Institute, Montreal, Quebec, Canada.
GPR88 is an orphan G-protein-coupled receptor that is considered a potential target to treat neuropsychiatric disorders, including addiction. Most knowledge about GPR88 function stems from knockout mouse studies, and in vivo pharmacology is still scarce. Here we examine the effects of the novel brain-penetrant agonist RTI-13951-33 on several alcohol-related behaviours in the mouse.
View Article and Find Full Text PDFThe neural orphan G protein coupled receptor GPR88 is predominant in the striatum and cortex of both rodents and humans, and considered a potential target for brain disorders. Previous studies have shown multiple behavioral phenotypes in Gpr88 knockout mice, and human genetic studies have reported association with psychosis. Here we tested the possibility that GPR88 contributes to Attention Deficit Hyperactivity Disorder (ADHD).
View Article and Find Full Text PDFFront Physiol
June 2022
Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada.
The expression of circadian clock genes, either centrally or in the periphery, has been shown to play an integral role in the control of behavior. Brain region-specific downregulation of clock genes revealed behavioral phenotypes associated with neuropsychiatric disorders and neurodegenerative disease. The specific function of the clock genes as well as the underlying mechanisms that contribute to the observed phenotypes, however, are not yet fully understood.
View Article and Find Full Text PDFSci Rep
September 2021
Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.
Previous studies suggest that signaling by the gamma-aminobutyric acid (GABA) type B receptor (GABAR) is involved in the regulation of binge eating, a disorder which might contribute to the development of obesity. Here, we show that intermittent access to a high fat diet (HFD) induced binge-like eating behavior with activation of dopamine receptor d1 (drd1)-expressing neurons in the caudate putamen (CPu) and nucleus accumbens (NAc) in wild-type (WT) mice. The activation of drd1-expressing neurons during binge-like eating was substantially increased in the CPu, but not in the NAc, in corticostriatal neuron-specific GABAR-deficient knockout (KO) mice compared to WT mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!