Motional displacements of hydrogen (H) in proteins can be measured using incoherent neutron-scattering methods. These displacements can also be calculated numerically using data from molecular dynamics simulations. An enormous amount of data on the average mean-square motional displacement (MSD) of H as a function of protein temperature, hydration, and other conditions has been collected. H resides in a wide spectrum of sites in a protein. Some H are tightly bound to molecular chains, and the H motion is dictated by that of the chain. Other H are quite independent. As a result, there is a distribution of motions and MSDs of H within a protein that is denoted dynamical heterogeneity. The goal of this paper is to incorporate a distribution of MSDs into models of the H incoherent intermediate scattering function, I(Q,t), that is calculated and observed. The aim is to contribute information on the distribution as well as on the average MSD from comparison of the models with simulations and experiment. For example, we find that simulations of I(Q,t) in lysozyme are well reproduced if the distribution of MSDs is bimodal with two broad peaks rather than a single broad peak.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129452PMC
http://dx.doi.org/10.1016/j.bpj.2018.02.024DOI Listing

Publication Analysis

Top Keywords

dynamical heterogeneity
8
distribution msds
8
determination dynamical
4
heterogeneity dynamic
4
dynamic neutron
4
neutron scattering
4
scattering proteins
4
proteins motional
4
motional displacements
4
displacements hydrogen
4

Similar Publications

Advancing precision and personalized breast cancer treatment through multi-omics technologies.

Am J Cancer Res

December 2024

School of Basic Medical Sciences, Jiamusi University No. 258, Xuefu Street, Xiangyang District, Jiamusi 154007, Heilongjiang, China.

Breast cancer is the most common malignant tumour in women, with more than 685,000 women dying of breast cancer each year. The heterogeneity of breast cancer complicates both treatment and diagnosis. Traditional methods based on histopathology and hormone receptor status are now no longer sufficient.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) has a significant impact on health and quality of life. The relationship of AF burden and temporal patterns of AF on patient symptoms, outcomes, and healthcare utilization is unknown. Insertable cardiac monitors (ICMs) are a strategic and as yet untapped, tool to investigate these relationships.

View Article and Find Full Text PDF

Cancer cells within tumors exhibit a wide range of phenotypic states driven by non-genetic mechanisms in addition to extensively studied genetic alterations. Conversions among cancer cell states can result in intratumoral heterogeneity which contributes to metastasis and development of drug resistance. However, mechanisms underlying the initiation and/or maintenance of such phenotypic plasticity are poorly understood.

View Article and Find Full Text PDF

Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ∼55 kDa N- and C-domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.

View Article and Find Full Text PDF

Hypermutated proviruses, which arise in a single Human Immunodeficiency Virus (HIV) replication cycle when host antiviral APOBEC3 proteins introduce extensive guanine to adenine mutations throughout the viral genome, persist in all people living with HIV receiving antiretroviral therapy (ART). However, hypermutated sequences are routinely excluded from phylogenetic trees because their extensive mutations complicate phylogenetic inference, and as a result, we know relatively little about their within-host evolutionary origins and dynamics. Using >1400 longitudinal single-genome-amplified HIV sequences isolated from six women over a median of 18 years of follow-up-including plasma HIV RNA sequences collected over a median of 9 years between seroconversion and ART initiation, and >500 proviruses isolated over a median of 9 years on ART-we evaluated three approaches for masking hypermutation in nucleotide alignments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!