Microfiltration and ultra-high-pressure homogenization for extending the shelf-storage stability of UHT milk.

Food Res Int

Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milano, Italy; Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, CREA-ZA Via A. Lombardo 11, 26900 Lodi, Italy.

Published: May 2018

AI Article Synopsis

Article Abstract

Fat separation, gelation or sedimentation of UHT milk during shelf-storage represent instability phenomena causing the product rejection by consumers. Stability of UHT milk is of increasing concern because access to emerging markets currently implies for this product to be stable during shipping and prolonged storage, up to 12 months. The role of microfiltration prior to UHT process in avoiding or retarding the gelation or sediment formation was studied by comparing microfiltered UHT milk to conventional UHT milk. A second trial was set up to study the effects of double ultra-high pressure homogenization in delaying the cream rising and UHT milk homogenized once at lower pressure was taken as control. All milk samples were produced at industrial plant level. Milk packages were stored at 22 °C, opened monthly for visually inspecting the presence of cream layer, gel or sediment and then analysed. Microfiltration markedly delayed the formation of both gel particles and sediment, with respect to the control, and slowed down the proteolysis in terms of accumulation of peptides although no correlation was observed between the two phenomena. The double homogenization, also evaluated at ultra-structural level, narrowed the fat globule distribution and the second one (400 MPa), performed downstream to the sterilization step, disrupted the fat-protein aggregates produced in the first one (250 MPa). The adopted conditions avoided the appearance of the cream layer in the UHT milk up to 18 months. This study contributes important knowledge for developing strategies to delay instability phenomena in UHT milk destined to extremely long shelf storage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2018.02.068DOI Listing

Publication Analysis

Top Keywords

uht milk
32
milk
10
uht
9
stability uht
8
instability phenomena
8
cream layer
8
microfiltration ultra-high-pressure
4
ultra-high-pressure homogenization
4
homogenization extending
4
extending shelf-storage
4

Similar Publications

The study aimed to analyze five commonly used veterinary antibiotics: tetracycline (TC), oxytetracycline (OTC), doxycycline (DOX), chlortetracycline (CTC), and enrofloxacin (ENR) in different types of milk samples, risk estimation, and to investigate the correlation between the presence of multiple antibiotic residues. About 27 milk samples, such as raw milk from collection centers, processed milk from processing plants, pasteurized, UHT, and flavored milk from retail stores, were examined using RP-HPLC against five veterinary antibiotics in Dhaka, Bangladesh. The correlation between antibiotics was analyzed using Pearson's correlation test.

View Article and Find Full Text PDF

In this study, raw milk was collected from three different grades of pastures and processed by pasteurization, blending and ultra-high temperature sterilization (UHT) in a factory production line with a feed size of 10 tons. Additionally, all samples (from raw milk to UHT milk samples) were analyzed by -nose and GC-MS. Key flavor compounds such as 2-heptanone, hexanal, nonanal, 3-methyl-butanal, and dimethyl sulfide were found.

View Article and Find Full Text PDF

Influence of Heat- and Cold-Stressed Raw Milk on the Stability of UHT Milk.

Foods

December 2024

Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.

This study investigated the variations and alterations in the concentrations of plasmin system components in raw and UHT (ultra-high-temperature) milk under cold stress (WCT ≤ -25 °C), heat stress (THI ≥ 80), and normal (THI < 70 and WCT ≥ -10 °C) circumstances. The findings indicated elevated amounts of plasmin system components in cold-stressed raw milk. While storing UHT milk at 25 °C, the concentrations and activity of plasmin in the milk exhibited an initial increase followed by a decrease, peaking around the 30th day.

View Article and Find Full Text PDF

Combined Effects of the Phage and Sodium Hypochlorite for Reducing Biofilm.

Microorganisms

December 2024

Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil.

are significant spoilage bacteria in raw milk and dairy products, primarily due to their ability to form biofilms and resist disinfection. This study explored the effects of the phage combined with sodium hypochlorite in reducing biofilms on stainless steel at various temperatures and ages. Biofilms were formed using UFV 041 in UHT milk, incubated at 4 °C and 30 °C for 2 and 7 days.

View Article and Find Full Text PDF

The quality issues of ultra-high-temperature (UHT) milk, such as protein hydrolysis and aging gels throughout shelf life, are caused by proteases from psychrophilic bacteria. However, existing enzyme activity detection techniques have low sensitivity and cannot accomplish the detection of product deterioration caused by low enzyme activity. In this study, an attempt was made to analyze the relationship between enzymatically cleaved peptides and product quality using peptidomics techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!