Chitosan modified magnetic kelp biochar (Chi-KB) was successfully synthesized for efficient removal of heavy metals (Cu) from wastewater. Interestingly, the characterization results indicated that Chi-KB showed 6 times higher surface area (6.17 m/g) than the pristine magnetic kelp biochar KB (0.97 m/g). In addition, new functional groups, such as NH and CN group, have been created on the surface of biochar as a result of chitosan modification process, which in turns led to improve the Cu adsorption capacity. The effect of pH and chitosan loading on heavy metal adsorption, and competition reaction of different metal ions adsorption were also investigated. Chi-KB exhibited a separation efficiency of more than 99.8%, which allows to recovery and reusability of the adsorbent material and heavy metals simultaneously. Overall, this study highlighted the Chi-KB is a promise adsorbent for heavy metal removal without sacrificing of the separation ability using magnetism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.03.077DOI Listing

Publication Analysis

Top Keywords

heavy metal
12
metal removal
8
magnetic kelp
8
kelp biochar
8
heavy metals
8
heavy
5
novel approach
4
approach developing
4
developing reusable
4
reusable marine
4

Similar Publications

The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC).

View Article and Find Full Text PDF

Associations between heavy metal exposure and vascular age: a large cross-sectional study.

J Transl Med

January 2025

Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.

Background: Heavy metal exposure is an emerging environmental risk factor linked to cardiovascular disease (CVD) through its effects on vascular ageing. However, the relationship between heavy metal exposure and vascular age have not been fully elucidated.

Methods: This cross-sectional study analyzed data from 3,772 participants in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2016.

View Article and Find Full Text PDF

Background: The imbalance between Egypt's water requirements and supply necessitates the use of unconventional water sources, such as treated sewage water (TSW) and agricultural drainage water (ADW), to combat water scarcity. This study investigated the effects of foliar glycine betaine (GB) on vegetative growth parameters, physiological characteristics, photosynthetic pigments, leaf element contents, anatomical leaf structures, and antioxidant activity. The experiment was conducted in two successive seasons (2021/2022 and 2022/2023) using Kapok seedlings irrigated with ADW and TSW at different mixing ratios with normal irrigation water (NIW) (25%, 50%, 75%, and 100%), combined with foliar spraying of GB at concentrations of 0.

View Article and Find Full Text PDF

The establishment of site-specific target limits (SSTLs) for old municipal solid waste (MSW) dumpsites is essential for defining remediation goals in a scientifically rigorous manner. However, a standardized framework for achieving this is currently lacking. This study proposes a comprehensive framework that integrates high-resolution site characterization (HRSC) tools, targeted sampling, and contaminant transport modeling to derive SSTLs.

View Article and Find Full Text PDF

Copper exposure induces neurotoxicity through ferroptosis in C. elegans.

Chem Biol Interact

January 2025

Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China. Electronic address:

Copper, as a vital trace element and ubiquitous environmental pollutant, exhibits a positive correlation with the neurodegenerative diseases. Recent studies have highlighted ferroptosis's significance in heavy metal-induced neurodegenerative diseases, yet its role in copper-related neurotoxicity remains unclear. This study aimed to investigate the role of ferroptosis in copper-induced neurotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!