Background: Air Quality indicators or indices (AQIs) are mainly used for communicating the air pollution levels and risk to the general population. However, very few epidemiological studies have used AQIs for characterizing exposure.
Objective: In the framework of the RESPOZE panel study we evaluated the association of daily ozone AQI levels with the daily occurrence of respiratory symptoms and Peak Expiratory Flow (PEF) and compared the effects with those estimated using measurements from fixed outdoor monitoring sites, in the city of Athens, Greece.
Materials And Methods: A panel of 97 children, aged 10-11years, was followed intensively for 35days (5weeks) during the academic year 2013-14. PEF and symptoms were recorded daily by each child. Two ozone AQIs classifying the air quality into 7 categories of increasing severity, were calculated; one characterizing the whole Athens area and one the local area around the child's residence and school. Measurements from fixed sites were also used. Mixed effects models for repeated measurements were applied, adjusting for several confounders.
Results: Increasing ozone levels were associated with increased incidence of symptoms, but the strongest and most statistically significant associations were found with the local air quality characterization with the AQI. Specifically, an increase in AQI-local by one category was associated with 34% (95% CI: 9%, 64%) increased odds of stuffy nose. When the AQI categories were "Bad" and "Severe", an increase in the incidence of cough was observed (OR 3.05 (95% CI: 1.29, 7.22) and 6.42 (95% CI: 1.47, 28.03) respectively). We did not observe a statistically significant association between AQI and PEF.
Conclusion: Our results show that the use of an AQI based on local conditions may be advantageous over the use of only measurements when investigating the effects of air pollution on health outcomes for improving communication of risk to the public.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.03.159 | DOI Listing |
BMC Public Health
December 2024
Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
Background: The burden of cardiovascular disease (CVD) is severe worldwide. Although many studies have investigated the association of particulate pollution with CVD, the effect of finer particulate pollution components on CVD remains unclear. This study aimed to explore the effect of five PM components ([Formula: see text], sulfate; [Formula: see text], nitrate; [Formula: see text], ammonium; OM, organic matter; BC, carbon black) on CVD admission in Shanghai City, identify the susceptible population, and provide clues for the prevention and control of particulate pollution.
View Article and Find Full Text PDFBMC Public Health
December 2024
Department of Chemistry, College of Natural and Computational Sciences, Wollega University, P.O. Box 395, Nekemte, Ethiopia.
Background: Indoor air pollution (IAP) is the major contributor (26%) to TB, in addition to other socioeconomic and environmental factors. It occurs in most developing countries like India, where people rely on the combustion of biomass-based solid fuels (low combustion efficiency and high pollution emissions) due to the prevailing socio-economic conditions. However, this cause-and-effect relationship between TB and IAP has not been studied much.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Center of Excellence on Oral Microbiology and Immunology, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Henri Dunant Rd, Bangkok, 10330, Thailand.
Background: Microorganisms in dental unit water (DUW) play a significant role in dental bioaerosols. If the methods used to decontaminate DUW also help improve air quality in dental clinics is worth exploring. In this study, we aim to identify the source of bacteria in dental bioaerosols and investigate the impact of waterline disinfectants on the quantity and composition of bacteria in DUW and bioaerosols.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Management, Shenzhen University, Shenzhen 518073, China; Center for Marine Development,Macau University of Science and Technology, Macao, 999078, China; Shenzhen International Maritime Institute, Shenzhen 518081, China. Electronic address:
Ships generate large amounts of air pollutants, including nitrogen dioxide (NO) that profoundly impacts air quality and poses serious threats to human health. It is crucial to understand the dynamics and drivers of ship-induced NO concentrations in China to support the prevention and control of fine particulate matter (PM) and ozone (O) pollution. This study built Generalized Additive Models (GAMs) to reveal the nonlinear effects of meteorological factors and ship emissions on ship-induced NO concentrations based on the Tropospheric Monitoring Instrument (TROPOMI) satellite data, AIS based emission model and meteorological data.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Tshwane University of Technology, Department of Chemistry, Private Bag X680, Pretoria, 0001, South Africa.
Landfilling is common in developing countries since it is the easiest and cheapest way of waste disposal, however, it leads to serious environmental problems such as soil, water, and air pollution. A landfill has a life span of fifteen years after which it is closed leaving the site unusable, as a result, effective methods are needed for restoring and reclaiming the closed landfill site for future use. Phytoremediation has emerged as a viable and environmentally friendly method, which uses green plants to remove pollutants from soil, air, and water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!