Systems-synthetic biology in understanding the complexities and simple devices in immunology.

Cytokine

National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India. Electronic address:

Published: August 2018

Systems and synthetic biology in the coming era has the ability to manipulate, stimulate and engineer cells to counteract the pathogenic immune response. The inherent biological complexities associated with the creation of a device allow capitalizing the biotechnological resources either by simply administering a recombinant cytokine or just reprogramming the immune cells. The strategy outlined, adopted and discussed may mark the beginning with promising therapeutics based on the principles of synthetic immunology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2018.03.029DOI Listing

Publication Analysis

Top Keywords

systems-synthetic biology
4
biology understanding
4
understanding complexities
4
complexities simple
4
simple devices
4
devices immunology
4
immunology systems
4
systems synthetic
4
synthetic biology
4
biology coming
4

Similar Publications

The emerging field of precision medicine relies on scientific breakthroughs to understand disease mechanisms and develop cutting-edge technologies to overcome underlying genetic and functional aberrations. The establishment of the Centre of Excellence for the Technologies of Gene and Cell Therapy (CTGCT) at the National Institute of Chemistry (NIC) in Ljubljana represents a significant step forward, as it is the first centre of its kind in Slovenia. The CTGCT is poised to spearhead advances in cancer immunotherapy and personalised therapies for neurological and other rare genetic diseases.

View Article and Find Full Text PDF

Advancements in nanoparticle-based vaccine development against Japanese encephalitis virus: a systematic review.

Front Immunol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Vaccination remains the sole effective strategy for combating Japanese encephalitis (JE). Both inactivated and live attenuated vaccines exhibit robust immunogenicity. However, the production of these conventional vaccine modalities necessitates extensive cultivation of the pathogen, incurring substantial costs and presenting significant biosafety risks.

View Article and Find Full Text PDF

Sustainable agricultural practices are essential to meet food demands for the increased population while minimizing the environmental impact. Considering rice as staple food for most of the world's population, it requires innovative approaches to ensure sustainable production. In this paper, we create a hypothesis that integrated nutrient management (INM) acts as a source of energy for microbes and improves the physical, chemical and biological properties of soils, but the current understanding of how soil microbiomes interact in integrated nutrient management toward mediating climate stress to support sustainable rice crop production is limited.

View Article and Find Full Text PDF

DNA palette code for time-series archival data storage.

Natl Sci Rev

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

The long-term preservation of large volumes of infrequently accessed cold data poses challenges to the storage community. Deoxyribonucleic acid (DNA) is considered a promising solution due to its inherent physical stability and significant storage density. The information density and decoding sequence coverage are two important metrics that influence the efficiency of DNA data storage.

View Article and Find Full Text PDF

Long-Term Protein Synthesis with PURE in a Mesoscale Dialysis System.

ACS Synth Biol

January 2025

Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.

Cell-free systems are powerful tools in synthetic biology with versatile and wide-ranging applications. However, a significant bottleneck for these systems, particularly the PURE cell-free system, is their limited reaction lifespan and yield. Dialysis offers a promising approach to prolong reaction lifetimes and increase yields, yet most custom dialysis systems require access to sophisticated equipment like 3D printers or microfabrication tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!