Polymer-Assisted Single Crystal Engineering of Organic Semiconductors To Alter Electron Transport.

ACS Appl Mater Interfaces

Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing University of Posts & Telecommunications, 9 Wenyuan Road , Nanjing 210023 , China.

Published: April 2018

A new crystal phase of a naphthalenediimide derivative (α-DPNDI) has been prepared via a facial polymer-assisted method. The stacking pattern of DPNDI can be tailored from the known one-dimensional (1D) ribbon (β phase) to a novel two-dimensional (2D) plate (α phase) through the assistance from polymers. We believe that the presence of polymers during crystal growth is likely to weaken the direct π-π interactions and favor side-to-side C-H-π contacts. Furthermore, β phase architecture shows electron mobility higher than that of the α phase in the single-crystal-based OFET. Theoretical calculations not only confirm that β-DPNDI has an electron transport performance better than that of the α phase but also indicate that the α phase crystal displays 2D transport while the β phase possesses 1D transport. Our results clearly suggest that polymer-assisted crystal engineering should be a promising approach to alter the electronic properties of organic semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b01731DOI Listing

Publication Analysis

Top Keywords

crystal engineering
8
organic semiconductors
8
electron transport
8
phase
8
crystal
5
polymer-assisted single
4
single crystal
4
engineering organic
4
semiconductors alter
4
alter electron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!