Dynamic regulation of the interactions between specific molecules on functional surfaces and biomolecules, for example, proteins or cells, is critical for biosensor and biomedical devices. Herein, we present a spiropyran (SP)-based light-responsive surface coating, hPG (hyperbranched polyglycerol)-SP, to control the adsorption of proteins and adhesion of cells. In the normal state, the SP groups on the coating surface were in hydrophobic ring-closed form, which promotes the nonspecific protein adsorption and cell adhesion. Under UV irradiation, the grafted SP groups were dynamically isomerized into hydrophilic/zwitterionic merocyanine. Both hydrophilicity and zwitterions support the formation of a hydrated layer and hence the resulting hPG-MC coatings highly resist protein adsorption and cell adhesion. Moreover, the presented hPG also provided a robust bioinert background to suppress the nonspecific protein adsorption and cells adhesion. Therefore, this functionalized coating exhibited a good photoregulated antifouling behavior. Moreover, the detachment of adsorbed proteins and adhered cells from the coating surface was also realized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201801051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!