Diversity of virulence genes in Brucella melitensis and Brucella abortus detected from patients with rheumatoid arthritis.

Microb Pathog

Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.

Published: May 2018

The presence of Brucella melitensis and Brucella abortus genomes were investigated in the synovial fluid (SF) samples from 90 patients with rheumatoid arthritis (RA). DNA extraction and PCR assay were performed for simultaneous identification and discrimination of B. melitensis and B. abortus from the SF using three specific primers. After gel electrophoresis, the PCR products were confirmed by DNA sequencing. The cbg, omp31, manA, virB, and znuA virulence genes typing were performed by multiplex-PCR. Of the 90 samples, 14 were positive for B. melitensis (n = 9; 10%) and B. abortus (n = 5; 5.5%). The virulotyping of positive samples revealed the presence of all five virulence genes in B. melitensis. The virB, cbg, and om31 were detected in all five samples of B. abortus. In addition, zhuA and manA were detected in three (60%) and four (80%) samples, respectively, of the B. abortus-positive samples. Moreover, a total of 94.2% and 89.2% of the 14 positive samples were also found positive for manA and znuA, respectively. Our findings revealed that the Brucella spp. genomes can be detected in the SF of RA patients by the PCR-based method. We thus suggest that physicians should consider the Brucella spp. as indicators of potential RA for the timely diagnosis and treatment of RA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2018.03.034DOI Listing

Publication Analysis

Top Keywords

virulence genes
12
brucella melitensis
8
melitensis brucella
8
brucella abortus
8
detected patients
8
patients rheumatoid
8
rheumatoid arthritis
8
samples positive
8
positive samples
8
brucella spp
8

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS.

View Article and Find Full Text PDF

Background infection (CDI) is a severe infection that needs to be monitored. This infection predominantly occurs in hospitalised patients after antimicrobial treatment, with high mortality in elderly patients.AimWe aimed at estimating the incidence of CDI in Italian hospitals over 4 months in 2022.

View Article and Find Full Text PDF

, commonly known as the "Chinese hibiscus", is a widely cultivated shrub with ornamental and medicinal applications (Jadhav et al., 2009). However, it is known to be susceptible to a range of pathogens including bacteria (Chase, 1986).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!