The FeS Quantum Dots (QDs) decorated SiO nanostructure were prepared by hydrothermal synthesis method. Chitosan and polypyrrole as polymers were used for the immobilization process. The characteristic structure of prepared samples was analyzed using several techniques such as X-ray diffraction, scanning and transmittance electron microscopy, photoluminescence and UV-vis spectroscopy. The mean crystallite sizes of FeS QDs/SiO nanocomposites, FeS QDs/SiO-chitosan nanocomposites and FeS QDs/SiO-polypyrrole nanohybrids are 56.12, 76.38, and 83.24nm, respectively. The band gap energy of FeS QDs/SiO nanocomposites, FeS QDs/SiO-chitosan nanocomposites and FeS QDs/SiO-polypyrrole nanohybrids were found out to be 3.0, 2.8, and 2.7eV, respectively. The photocatalysis properties were investigated by degradation of ampicillin under UV light illumination. The effect of experimental variables, such as, pH and time, on photo-degradation efficiency was studied. The results show that the three prepared samples nanopowders under UV light was in pH3 at 60min. As it could be seen that the amount of ampicillin degradation was increased with the loading of FeS QDs on SiO and FeS QDs/SiO on chitosan nanoparticles and polypyrrole nanofiber. The antibacterial experiment was investigated under visible light illumination and the FeS QDs/SiO-chitosan nanocomposites and FeS QDs/SiO-polypyrrole nanohybrids demonstrate good antibacterial compared to FeS QDs/SiO nanocomposites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2018.03.119 | DOI Listing |
Biopolymers
March 2025
Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.
In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:
Population expansion, industrialization, urban development, and climate changes increased the water crisis in terms of drinking water availability. Among the various nanomaterials for nanoremediation towards water treatment, FeS-based nanocomposites have emerged as promising candidates in the adsorptive and photocatalytic removal of contaminants. This paper, therefore, evaluates the potential of FeS-based nanocomposites for environmental applications, more specifically the combined use of adsorption and photocatalysis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland.
Chitosan, a biopolymer derived from chitin, exhibits significant antifungal properties, making it a valuable compound for various applications in agriculture food preservation, and biomedicine. The present study aimed to assess the antifungal properties of chitosan-modified films using sol-gel derivatives (CS:ZnO) or graphene-filled chitosan, (CS:GO and CS:rGO) against two strains of fungi that are the most common cause of food spoilage: ATCC 9643 and DSM 1282. The results indicate important differences in the antifungal activity of native chitosan films and zinc oxide-modified chitosan films.
View Article and Find Full Text PDFSmall
December 2024
Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
FeS-based nanomaterials are widely used in Fenton-like reaction of antibiotics degradation. However, the problems of poor stability and low reusability limit the catalytic efficiency. Herein, the study ingeniously introduced the g-CN into FeS to synthesize g-CN@biogenic FeS (CN-BF-1) nanocomposite with strong interaction of iron ions and "N-pots" by the mediation of sulfate reducing bacteria (SRB).
View Article and Find Full Text PDFMater Today Bio
December 2024
Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
Nanozymes constitute a promising treatment strategy for antitumor therapy. However, the catalytic function of metal‒organic framework (MOF)-based nanozymes during cuproptosis remains unclear. In this study, a Cu(Ⅱ)-based MOF nanocomposite loaded with the copper ionophore elesclomol and surface modified with polyethylene glycol polymer (PEG) was developed (ES@Cu(Ⅱ)-MOF) for effective cuproptosis induction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!